Open Access
Article
Article ID: 2731
PDF
by Zarif Bin Akhtar
Metaverse 2024 , 5(2);    144 Views
Abstract Artificial intelligence (AI) stands as a potent catalyst for revolutionizing manufacturing, promising unprecedented efficiency, agility, and resilience. This research embarks on an investigative journey to dissect the multifaceted landscape of AI in manufacturing, aiming to unravel its current status, intrinsic challenges, and prospective pathways. This research unveils the intricate relationship between AI technologies and manufacturing processes across diverse domains. Examining various domains, including system-level analysis, human-robot collaboration, process monitoring, diagnostics, prognostics, and material-property modeling. The research also reveals AI’s transformative potential in optimizing manufacturing operations, enhancing decision-making, and fostering innovation. By dissecting each domain, the research illuminates how AI empowers manufacturers to adapt to dynamic market demands and technological advancements, ultimately driving sustainable growth and competitiveness. Moreover, it also examines the evolving dynamics of human-robot collaboration within manufacturing settings, recognizing AI’s pivotal role in facilitating seamless communication, shared understanding, and dynamic adaptation between humans and machines. Through an exploration of AI-enabled human-robot collaboration, this research underscores the transformative power of symbiotic relationships in reshaping the future of manufacturing. While highlighting opportunities, it acknowledges the myriad challenges accompanying AI integration in manufacturing, such as data quality issues, interpretability of AI models, and knowledge transfer across domains. By addressing these challenges, the research aims to pave the way for more resilient AI-driven manufacturing systems capable of navigating complex market landscapes and technological disruptions. This research sheds light on AI’s transformative potential in manufacturing, inspiring collaborative efforts and innovative solutions that will propel the industry forward into a new era of possibility and prosperity.
show more
Open Access
Article
Article ID: 2568
PDF
by Andrew Begemann, James Hutson
Metaverse 2024 , 5(2);    18 Views
Abstract This study conducts an empirical exploration of generative Artificial Intelligence (AI) tools across the game development pipeline, from concept art creation to 3D model integration in a game engine. Employing AI generators like Leonardo AI, Scenario AI, Alpha 3D, and Luma AI, the research investigates their application in generating game assets. The process, documented in a diary-like format, ranges from producing concept art using fantasy game prompts to optimizing 3D models in Blender and applying them in Unreal Engine 5. The findings highlight the potential of AI to enhance the conceptualization phase and identify challenges in producing optimized, high-quality 3D models suitable for game development. This study reveals the current limitations and ethical considerations of AI in game design, suggesting that while generative AI tools hold significant promise for transforming game development, their full integration depends on overcoming these hurdles and gaining broader industry acceptance.
show more
Open Access
Article
Article ID: 2654
PDF
by Kholoud Ghaith, James Hutson
Metaverse 2024 , 5(2);    40 Views
Abstract The widespread adoption of generative artificial intelligence (GAI) technologies heralds an era of expanding possibilities in the domain of cultural heritage conservation. This paradigm shift is marked by a confluence of innovative methodologies, including digital twin mapping, digital archiving, and enhanced preservation strategies, aimed at safeguarding the vestiges of our shared past. The application of AI within this field represents a frontier where technology and tradition intersect, offering new vistas for the preservation of historical structures and artifacts that are at risk of deterioration or oblivion. This article endeavors to elucidate the perspectives of professionals within the conservation domain on the integration of AI technologies, drawing upon a comprehensive review of scholarly discourse and the insights derived from a qualitative study. These discussions brought forth rich insights from a spectrum of professionals, each contributing unique perspectives based on their domain expertise and experiences. Participants included conservationists, archaeologists, museum curators, technologists, architects, and restorers, among others, whose collective wisdom paints a multifaceted picture of the challenges and opportunities AI presents in this field.
show more
Open Access
Article
Article ID: 2756
PDF
by Chao Ma
Metaverse 2024 , 5(2);    49 Views
Abstract Standards are important in facilitating the development of new technologies in the Metaverse scene, and machine readable standards are a new form of standards centered on machine reading, execution, and understanding. Therefore, the study of machine readable standards is of great significance to promote the development of Metaverse technology and disciplines. At present, there is no research on the fusion of machine readable standards and Metaverse home and abroad, and there is no research on the research value, key technologies, difficult challenges and application scenarios of machine readable standards under the perspective of Metaverse. Challenges and potential opportunities for the application of machine readable standards are also discussed. Finally, the application scenarios of machine readable standard in the Metaverse field are proposed, including four scenarios: resource retrieval, knowledge question and answer, personalized knowledge push and virtual digital human.
show more
Open Access
Article
Article ID: 2750
PDF
by Emmanuel Kekle Ahialey, Amos T. Kabo–bah, Samuel Gyamfi
Metaverse 2024 , 5(2);    20 Views
Abstract Proper understanding of LULC changes is considered an indispensable element for modeling. It is also central for planning and management activities as well as understanding the earth as a system. This study examined LULC changes in the region of the proposed Pwalugu hydropower project using remote sensing (RS) and geographic information systems (GIS) techniques. Data from the United States Geological Survey's Landsat satellite, specifically the Landsat Thematic Mapper (TM), the Enhanced Thematic Mapper (ETM), and the Operational Land Imager (OLI), were used. The Landsat 5 thematic mapper (TM) sensor data was processed for the year 1990; the Landsat 7 SLC data was processed for the year 2000; and the 2020 data was collected from Operation Land Image (OLI). Landsat images were extracted based on the years 1990, 2000, and 2020, which were used to develop three land cover maps. The region of the proposed Pwalugu hydropower project was divided into the following five primary LULC classes: settlements and barren lands; croplands; water bodies; grassland; and other areas. Within the three periods (1990–2000, 2000–2020, and 1990–2020), grassland has increased from 9%, 20%, and 40%, respectively. On the other hand, the change in the remaining four (4) classes varied. The findings suggest that population growth, changes in climate, and deforestation during this thirty-year period have been responsible for the variations in the LULC classes. The variations in the LULC changes could have a significant influence on the hydrological processes in the form of evapotranspiration, interception, and infiltration. This study will therefore assist in establishing patterns and will enable Ghana's resource managers to forecast realistic change scenarios that would be helpful for the management of the proposed Pwalugu hydropower project.
show more