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Abstract: With the rapid development of deep learning technology, artificial intelligence (AI) 

has found wide applications in diverse domains such as image classification, text processing, 

and autonomous driving. However, the increasing prevalence of security issues cannot be 

ignored. Studies have shown that deep neural network models face security risks due to 

adversarial sample attacks. These attacks involve adding imperceptible perturbations to 

deceive the model’s classification results, exposing vulnerabilities in deep learning model 

applications. While transfer attack methods offer practicality in real-world scenarios, their 

current performance in black-box attacks is limited. In this study, we propose a method that 

combines an attention mechanism and a frequency domain transformation to enhance the 

robustness of adversarial perturbations, thereby improving the performance of transfer attacks 

in black-box attack scenarios of deep learning models. Specifically, we introduce the CBAM-

ResNet50 enhancement model based on attention mechanisms into transfer attacks, enhancing 

the model’s ability to identify important image regions. By adding perturbations to these 

attention-concentrated regions, adversary perturbation robustness is improved. Furthermore, 

we introduce a method for randomly transforming image enhancement in the frequency domain, 

which increases the diversity and robustness of adversarial perturbation by distributing 

perturbations across edges and textures. Experimental results demonstrate that our proposed 

method, considering both human perceptibility and computational cost, achieves a maximum 

black-box transfer attack success rate of 60.05%, surpassing the 49.65% success rate achieved 

by the NI-FGSM method across three models. The average success rate of the five methods 

exceeds an improvement of 6 percentage points in black-box attacks. 

Keywords: deep learning; adversarial samples; transferability; black-box attacks; attention 

mechanisms; frequency domain transformations 

1. Introduction 

As deep learning technology continues to gain traction across different fields, the 

revelation of adversarial samples [1] which are maliciously designed to attack deep 

learning models raises wide concern on potential practical applications of them. 

Among different attacks, black-box attacks [2] are more realistic and challenging than 

white-box attacks, where attackers have full knowledge of the victim model. In black-

box attacks, attackers lack access to the victim model and can only observe its 

classification outputs, sometimes without confidence scores. Therefore, black-box 

attacks are more relevant and practical for real-world scenarios. 

Black-box attacks can be traced back to late 1990s, when researchers started 

investigating how to attack classifiers based on traditional machine learning 

algorithms [3]. In this attack scenario, the attackers lack access to the internal model 

details, limiting them to perform the attack solely by utilizing the outputs of the model 
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after several queries. Hence, this attack is referred to as a black-box attack. The initial 

adversarial attack methods targeted linear classifiers such as support vector machines 

[4] and logistic regression [5]. These attacks used mathematical techniques to generate 

misleading samples for the classifier, causing it to output incorrect results. Over time, 

researchers delved into the exploration of attacking increasingly intricate models, 

including deep neural networks. 

Regarding adversarial sample generation, researchers have proposed several 

improved algorithms, including those based on model uncertainty [6] and 

reinforcement learning [7]. In terms of attack evaluation, some metrics have been 

applied to assess the effectiveness of black-box adversarial attacks, such as success 

rate, failure rate, and sustained attack count. To defend such adversarial attacks, 

researchers have proposed various defense methods, such as adversarial training [8], 

randomization defense [9], and ensemble defense [10], to enhance model robustness. 

Transfer attacks [11] are a variant of black-box adversarial attacks, where 

attackers exploit successful adversarial samples generated against one target model to 

attack another target model. Research on transfer attacks primarily focuses on the 

transferability of adversarial samples and the transferability of attacks. Adversarial 

sample transferability examines whether adversarial samples generated for one target 

model can also remain adversarial on another. Attack transferability investigates 

whether attackers can use a set of adversarial samples to attack multiple target models. 

Scholars have proposed improved algorithms to enhance the transferability of 

adversarial samples in transfer attacks, including transfer learning-based attack 

algorithms [12–14], feature alignment-based attack algorithms [15,16], and adaptive 

attack algorithms [17–19]. 

In conclusion, black-box attacks and transfer attacks are prominent research 

directions in the field of deep learning. As deep learning continues to advance in 

practical applications, these attack algorithms will undergo further improvements and 

optimizations to enhance model robustness.  

In this paper, we focus on image classification tasks in deep neural network 

models. The proposed attack method combines an attention mechanism and a spatial-

to-frequency domain transformation to enhance the robustness of perturbations and 

improve the performance of transfer attacks. 

The main contributions of this paper can be summarized as follows: 

1) We introduced an attention mechanism into adversarial sample transferability 

attacks. Specifically, we build a CBAM-ResNet50-based model on top of 

ResNet50 as the victim model. This model enhances the attention to the robust 

regions in the image, thereby reducing the overfitting problem of the generated 

adversarial perturbations in the victim model. 

2) We proposed a method introduces random transformations in the frequency 

domain for image enhancement during the generation of adversarial samples. 

Frequency domain random transformations enhance the diversity of adversarial 

perturbations and forces attack algorithms to seek more robust perturbations, 

thereby improving their transferability. 

3) By combining the CBAM attention mechanism with frequency domain image 

transformation, empirical results show that the two approaches can enhance the 

transferability of adversarial samples. Furthermore, to optimize the performance 
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of the proposed adversarial algorithm combined with the CBAM attention 

mechanism and frequency domain image transformation, this paper explores the 

specific impact of changes in factors related to adversarial sample transferability, 

such as the maximum perturbation value, iteration times, and frequency domain 

transformation probability 𝑃. 

2. Background knowledge 

Adversarial attacks can be divided in to two types, white-box attack and black-

box attack. White-box attack means the attackers have full knowledge of the victim 

model, and black-box attack refers to the scenario where the victim model seems like 

a black box to the attackers, and only the output is available in common settings. 

Black-box attacks can be roughly categorized into three types: 1) surrogate model 

attacks [20–22], where a comparable neural network model is trained using the same 

training data as the target model, and then white-box attacks are conducted on the 

surrogate model to indirectly target the original model. 2) attack based on decision 

boundary [22,23], where the parameters and architecture of the neural network are not 

accessible, but the model’s output can be queried repeatedly to iteratively generate 

adversarial samples. The main idea is to initialize the sample as an image of the target 

class and iteratively approach the original image near the decision boundary based on 

the query results. By continuously iterating the adversarial samples while keeping the 

classification result as the target class, the goal is to get as close as possible to the 

original sample, and output final adversarial samples when the predefined stopping 

criteria is met. 3) attack based on adversarial sample transferability [24,25], where 

research has shown that adversarial samples generated for one model have a certain 

probability of causing misclassification when applied to another model. Therefore, 

powerful black-box attacks can be achieved by enhancing the transferability of 

adversarial samples. Black-box attacks typically involve making numerous queries to 

the neural network model in the first two types. However, in real-world situations, 

models can easily identify these unusual and frequent queries. Therefore, exploring 

black-box attacks that rely on the transferability of adversarial samples holds more 

practical promise for application. 

FGSM (Fast Gradient Sign Method) class methods are classic gradient based 

methods for generating adversarial samples. This article is also based on several 

FGSM class methods, so this section introduces several FGSM class methods. Define 

𝑥  as the original sample, 𝑥adv  as the generated adversarial sample, and 𝜀 as the 

perturbation size that controls the attack intensity of the adversarial sample. 𝐽(𝜃, 𝑥, 𝑦) 

is the loss function of the target model, ∇𝑥𝐽(𝜃, 𝑥, 𝑦)  is the gradient of the loss 

function to the input sample, reflecting the sensitivity of the model to the sample. 

𝑠𝑖𝑔𝑛 represents a sign function that takes a gradient. 

The FGSM [26] attack is based on the concept of introducing a perturbation to 

the input image in order to create an adversary sample. This perturbation is computed 

by maximizing the gradient of the loss function with respect to the input data. By doing 

so, the attackers can create a significant perturbation that causes the neural network to 

generate different outputs for the original image and the adversary sample. The 

calculation Equation of FGSM attack algorithm is shown in Equation (1): 
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𝑥adv = 𝑥 + 𝜀 ⋅ 𝑠𝑖𝑔𝑛(𝛻𝑥𝐽(𝜃, 𝑥, 𝑦)). (1) 

I-FGSM (Iterative Fast Gradient Sign Method) [27] is an iterative attack 

algorithm based on FGSM. The following is the specific Equation expression of I-

FGSM attack: 

𝑋0
𝑎𝑑𝑣 = 𝑋 (2) 

𝑋𝑁+1
𝑎𝑑𝑣 = 𝐶𝑙𝑖𝑝𝑋,𝜀{𝑋𝑁

𝑎𝑑𝑣 + 𝛼𝑠𝑖𝑔𝑛(𝛻𝑋𝐽(𝜃, 𝑋𝑁
𝑎𝑑𝑣 , 𝑦𝑡𝑟𝑢𝑒))} (3) 

In Equation (2), 𝑋  is the original picture, and in Equation (3), 𝑋𝑁
adv  is the 

adversary sample processed by FGSM algorithm n times, Clip𝑋,𝜀(Ai,j) cuts each 

element Ai,j in the input vector to [𝑋𝑖,𝑗−𝜀 , 𝑋𝑖,𝑗+𝜀]. sign (∇𝑋J (𝜃, X 𝑁
adv, ytrue) and the 

corresponding calculation amount in the original FGSM are the same, 𝛼 represents 

the amplitude of image pixel update in each iteration. 

The MI-FGSM (Momentum Iterative Fast Gradient Sign Method) [28] attack 

method is an improved method based on the BIM attack method. The momentum term 

is introduced to memorize the gradient of each iteration, so as to increase the 

directional stability of gradient update. Specifically, the MI-FGSM attack method 

makes a weighted average of the previous gradient direction and the current gradient 

direction at each iteration, that is:  

𝑔𝑡 = 𝛼𝑔𝑡−1 +
𝛻𝑥𝐽(𝜃, 𝑥, 𝑦)

∥ 𝛻𝑥𝐽(𝜃, 𝑥, 𝑦) ∥1
 (4) 

In Equation (4), 𝑔𝑡  is the gradient of iteration t, 𝛼 is the momentum factor, 

∇𝑥𝐽(𝜃, 𝑥, 𝑦) represents the gradient of the loss function of the model with respect to 

input 𝑥  under the current input 𝑥  and label 𝑦. In each iteration, the MI-FGSM 

attack method uses the accumulated gradient direction to update the current adversary 

sample 𝑥, as shown in Equation (5): 

𝑥𝑡+1
′ = 𝑥𝑡

′ + 𝜖𝑠𝑖𝑔𝑛 (𝑔𝑡) (5) 

NI-FGSM (non-local iterative fast gradient sign method) [29] is an algorithm for 

generating adversary samples based on iterative optimization. Its main idea is to use a 

better optimization algorithm to improve the transferability. Specifically, NAG-

Nesterov accelerated gradient is used to optimize gradient based iterative attacks. 

NAG can be regarded as an improved version of momentum-based optimization. The 

specific Equation is shown as follows: 

𝑣𝑡+1 = 𝜇 ⋅ 𝑣𝑡 + 𝛻𝜃𝑡
𝒥(𝜃𝑡 − 𝛼 ⋅ 𝜇 ⋅ 𝑣𝑡)

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 ⋅ 𝑣𝑡+1

 (6) 

NI-FGSM can escape from local optima more quickly, thus greatly enhancing 

attack performance and portability, specifically realizing: 

𝑥𝑡
𝑛𝑒𝑠 = 𝑥𝑡

𝑎𝑑𝑣 + 𝛼 ⋅ 𝜇 ⋅ 𝑔𝑡 , 

𝑔𝑡+1 = 𝜇 ⋅ 𝑔𝑡 +
𝛻𝑥𝐽(𝑥𝑡

𝑛𝑒𝑠 , 𝑦𝑡𝑟𝑢𝑒)

∥ 𝛻𝑥𝐽(𝑥𝑡
𝑛𝑒𝑠 , 𝑦𝑡𝑟𝑢𝑒) ∥1

 (7) 

𝑥𝑡+1
𝑎𝑑𝑣 = 𝐶𝑙𝑖𝑚 𝑥

𝜖 {𝑥𝑡
𝑎𝑑𝑣 + 𝛼 ⋅ 𝑠𝑖𝑔𝑛 (𝑔𝑡+1)}, 

In Equation (7), 𝑔𝑡  represents the cumulative gradient at 

iteration 𝑡, 𝜇 represents attenuation coefficient of 𝑔𝑡 . 

PGD (Projected Gradient descent) [30] is an iterative attack method. Compared 

with FGSM and FGM, PGD carries out multiple iterations. Each iteration takes small 

steps to project the perturbation to the specified range to achieve the purpose of attack. 
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𝑔𝑡 =▽ 𝑋𝑡(𝐿(𝑓𝜃(𝑋𝑡), 𝑦)) (8) 

In Equation (8), 𝑔𝑡  represents the gradient of the loss at iteration 𝑡 with respect 

to the input at iteration. 

𝑋𝑡+1 = ∏  

𝑋+𝑆

(𝑋𝑡 + 𝜀(
𝑔𝑡

∣∣ 𝑔𝑡 ∣∣
)) (9) 

In Equation (9), the input of the 𝑡 + 1 time is obtained through the input of the 

𝑡 time and its corresponding gradient information. ∏  𝑋+𝑆 is to map the input back to 

the specified range S when the perturbation exceeds the specified range. 

With regard to the researches on attack transferability, there are roughly 2 types 

of transferability-enhancing methods: 1) optimization-based methods [31–34] that 

directly optimize for the adversarial perturbations based on one or more surrogate 

models at inference time, without introducing additional generative models, and 2) 

generation-based methods [35,36] that introduce generative models dedicated for 

adversary synthesis. The latter methods take an alternative approach by directly 

synthesizing the adversarial example (or the adversarial perturbation) with generative 

models. Generation-based attacks comprise two stages: Training and the attack stages. 

These works have gained a lot success and shed light on new researches regarding 

attack transferability. 

3. Method 

We introduce a novel approach to address the issue of limited transferability in 

black-box transfer attacks. It focuses on enhancing the performance of transfer attack 

by employing an attention mechanism and frequency domain transformation. The 

proposed method operates at both the model and image preprocessing levels within 

the black-box attack scenario of deep learning models. The following describes the 

methods to enhance the performance of transfer attack by introducing attention 

mechanism and random transformation in frequency domain into the white-box model. 

3.1. Introducing CBAM-ResNet50 model into transferability attack 

The attention mechanism [31] has gained widespread usage in deep learning 

models in recent years, significantly enhancing both accuracy and model robustness. 

This robustness improvement can be attributed to the attention mechanism’s ability to 

focus on crucial image features. Consequently, the transferability of adversarial 

samples, referring to their generalization across different models, is typically poor. 

This poor transferability stems from the inability of added perturbations to effectively 

target the robustness characteristics of the image, leading to overfitting in individual 

models. Building upon this notion, this paper introduces a novel approach that 

leverages the attention mechanism to enhance the performance of transfer attack. 

Using attention mechanism to mine local features in the deep neural network and 

combine them with global features is the principle of attention mechanism to make the 

model pay more attention to local robust features. This paper applies this principle to 

the lifting adversary sample transferability method based on attention mechanism to 

guide the attention to image robust features when adding perturbations, Thus, it 

focuses on the perturbation of robust features and reduces the perturbation of non-

robust features, so that the generated adversary samples have better generalization 
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performance for different models, and enhance the transferability of adversary samples. 

The CBAM (Convolutional Block Attention Module) [32], introduced by Woo 

et al. In 2018, is a widely adopted module in computer vision. It incorporates a spatial 

attention mechanism to enhance model performance and robustness. It consists of two 

components: the Channel Attention Module (CAM) and the Spatial Attention Module 

(SAM). By integrating the CBAM module into the ResNet50 model, we obtain the 

CBAM-ResNet50 architecture, as illustrated in Figure 1. 

 

Figure 1. Network structure of CBAM-ResNet50. 

In order to compare the effect of models before and after ResNet50 combined 

with CBAM attention mechanism, we have visualized the thermodynamic diagram. 

Figure 2 shows the visualization effect before and after ResNet50 combined with 

CBAM attention mechanism. It can be concluded from the figure that the thermal map 

combined with CBAM is more accurate for the image feature area and has a larger 

range. 

 
Figure 2. Visual renderings before and after ResNet50 combined with CBAM attention mechanism. 

3.2. FDRT enhancement of image random transform frame based on 

frequency domain to enhance transferability 

The generation of adversary samples depends on the original input clean images. 

When the number of original clean images is small and the types are limited, it is very 

easy to cause “over fitting” phenomenon, which leads to weak transferability when 

transferring to other models. In recent years, data enhancement methods such as image 

random transformation have been introduced into the generation of adversary samples 

and have been widely used. However, most of the image transformation methods are 

based on the spatial domain, and they are lack of enough randomness, thus easy to be 

defended targetedly, and leading to weak transferability. Therefore, this paper 
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introduces FDRT (Frequency domain random transformation), an image random 

transformation framework based on frequency domain, into the generation of 

adversary samples. In each iteration of adversary sample generation, FDRT randomly 

selects one of the four transformation methods of gaussian blur with equal probability, 

sharpening, rotation and scaling, and applies it to the image with probability 𝑃 = 0.5. 

This random transformation increases the diversity and transferability of adversary 

samples, so that attackers better perform the attack. 

3.2.1. Build image space domain and frequency domain conversion framework 

Since our frequency domain image random transformation method needs to be 

converted within the frequency domain and spatial domain, this section first introduces 

the image space domain and frequency domain transformation methods we use. 

1) DCT transformation 

Discrete Cosine Transform (DCT) is used in our model. For a gray-scale image 

𝑓(𝑥, 𝑦) of size N × N, its DCT transform can be expressed by Equation (10): 

𝐹(𝑢, 𝑣) =
1

√𝑁
𝐶(𝑢)𝐶(𝑣) ∑ ∑ 𝑓(𝑥, 𝑦)𝑐𝑜𝑠 [

(2𝑥 + 1)𝑢𝜋

2𝑁
]

𝑁−1

𝑦=0

𝑁−1

𝑥=0

𝑐𝑜𝑠 [
((2𝑦 + 1)𝑢𝜋)

2𝑁
] (10) 

where in, C (u) C (v) is the DCT coefficient. Through DCT transformation, the spatial 

domain pixels of the image will be converted into coefficients in the frequency domain. 

These coefficients describe the changes of different frequencies in the image. The 

larger the coefficient, the higher the frequency appears in the image. 

2) IDCT transformation 

The inverse transform from frequency domain to space domain is also called 

inverse discrete cosine transform (IDCT). IDCT is the process of remapping the 

frequency domain coefficients after DCT transformation back to the original spatial 

domain. Similar to DCT transform, IDCT transform is also a linear transform. 

Assuming that a DCT coefficient matrix X with the size of N × N has been obtained, 

the IDCT transformation Y of this matrix can be calculated by Equation (11): 

𝑌𝑢,𝑣 =
1

2𝑁
𝑎(𝑢)𝑎(𝑣) ∑ ∑ 𝑋𝑢,𝑣𝑐𝑜𝑠 [

(2𝑥 + 1)𝑢𝜋

2𝑁
]

𝑁−1

𝑦=0

𝑁−1

𝑥=0

𝑐𝑜𝑠 [
((2𝑦 + 1)𝑢𝜋)

2𝑁
] (11) 

Compared with the Equation of DCT transform, the coefficient matrix of IDCT 

transform is divided by 2N, and a product of 𝑎(𝑢) and 𝑎(𝑣) is added. This is to 

ensure the orthogonality and energy conservation of IDCT transform. 

3.2.2. Random transformation of frequency domain image to enhance 

transferability 

To enhance the diversity and transferability of adversary samples, we introduce 

a method that boosts their robustness through random image transformations during 

each iteration of sample generation. More precisely, the image first undergoes 

conversion from spatial to frequency domain, and a random selection is made among 

four transformation methods: Gaussian blur, sharpening, rotation, and scaling. A 

probability value of P = 0.5 (based on experimentation) is then applied to the image. 

Afterward, the frequency domain is converted back to the spatial domain, and the 

iteration process is repeated. Through the random combination of these four 

transformations methods, the diversity and robustness of the adversary samples can be 
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increased, thus improving their transferability. The following describes the four 

transformation methods of gaussian blur, sharpening, rotation and scaling in the 

frequency domain. 

Firstly, the Gaussian fuzzy transformation in frequency domain is introduced. 

Gaussian blur is one of the most basic filtering methods in image processing, which is 

used to reduce noise and smooth images. In the frequency domain, Gaussian blur can 

be achieved by low-pass filtering the Fourier transformed image. Gaussian blur can be 

expressed by Equation (12): 

𝐻(𝑢, 𝑣) = 𝑒
𝐷2(𝑢,𝑣)

2𝜎2  (12) 

𝐷(𝑢, 𝑣)  represents the distance function in the frequency domain, while σ 

denotes the standard deviation of the Gaussian kernel. 

The second is sharpening transform in frequency domain. Sharpening 

transformation can enhance the edges and details of the image, and reduce image blur 

and distortion. In the frequency domain, sharpening can be achieved by high pass 

filtering the Fourier transformed image in the frequency domain. Sharpening can be 

expressed by Equation (13): 

𝐺(𝑢, 𝑣) = (1 + 𝑘𝐻(𝑢, 𝑣))𝐹(𝑢, 𝑣) (13) 

where 𝐹(𝑢, 𝑣) is the frequency domain representation of the original image, k is the 

sharpening coefficient, and 𝐻(𝑢, 𝑣) is the sharpening filter. 

The third is the frequency domain rotation transform. The rotation in frequency 

domain can be realized by rotating the image after Fourier transform. The rotation 

transformation can be expressed by Equation (14): 

𝐺(𝑢, 𝑣) = 𝐹(𝑢′, 𝑣′) (14) 

where (𝑢′, 𝑣′) is the coordinate after rotation transformation, which is calculated by 

Equation (15): 

𝑢′ = 𝑢𝑐𝑜𝑠𝜃 + 𝑣𝑠𝑖𝑛𝜃, 𝑣′ = −𝑢𝑠𝑖𝑛𝜃 + 𝑣𝑐𝑜𝑠𝜃 (15) 

Finally, the frequency domain scaling transform. Scaling can be achieved by 

interpolating the Fourier transformed image in the frequency domain. Scaling 

transformation can be expressed by Equation (16): 

𝐺(𝑢, 𝑣) = 𝐹(𝑘𝑢, 𝑘𝑣) (16) 

where k is the scale. Figure 3 shows an example of Gaussian blur, sharpening, rotation 

and scaling of an image in the frequency domain. The example image is an image 

converted from the frequency domain back to the spatial domain. 

The main concept of FDRT involves transforming the image from the spatial 

domain to the frequency domain during each iteration of generating adversary samples. 

One of the four transformation methods (Gaussian blur, sharpening, rotation, or 

scaling) is randomly selected for image enhancement, with a probability of 𝑃 = 0.5. 

The enhanced image in the frequency domain is then converted back to the spatial 

domain and used as the input image for the next iteration, enabling the generation of 

transferable adversary samples. Based on I-FGSM algorithm, Algorithm 1 mainly 

shows the pseudo code of the main framework of FDRT-I-FGSM algorithm. 
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Figure 3. Example of Gaussian blur, sharpening, rotation and scaling in frequency domain. 

Algorithm 1 FDRT-I-FGSM 

Input: clean sample 𝑥, normalized to [-1,1], its corresponding real label is 𝑦𝑡𝑟𝑢𝑒, the maximum infinite norm perturbation is 𝜀, 

the iteration step is 𝛼, and the iteration round is 𝛵， The classification function is 𝑓, the loss function is 𝐽, the transformation 

from spatial domain to frequency domain is DCT transformation, the transformation from frequency domain to spatial domain is 

IDCT transformation, the image transformation function is 𝜃, and the transformation probability is 𝑃 

Output: the adversary sample is 𝑥𝑎𝑑𝑣 

1:  Initialize adversary sample 𝑥0
𝑎𝑑𝑣 = 𝑥；𝛼 = 𝜀/𝑇 

2: for 𝑡 = 0 to 𝑇 − 1 do: 

3:   Input image 𝑥 into classification function f and calculate gradient information 𝛻𝑥𝐽(𝜃, 𝑥, 𝑦𝑡𝑟𝑢𝑒); 

4:   Update the adversary sample and cut it 𝑥𝑡+1
𝑎𝑑𝑣 = 𝐶𝑙𝑖𝑝𝑥,𝜀 {𝑥𝑡

𝑎𝑑𝑣 + 𝛼𝑠𝑖𝑔𝑛 (𝛻𝑥𝐽(𝜃, 𝑥𝑡
𝑎𝑑𝑣 , 𝑦𝑡𝑟𝑢𝑒))} ; 

5:   DCT (𝑥𝑡+1
𝑎𝑑𝑣) transformation will be performed on the adversary sample; 

6:   Perform random transformation of frequency domain image  𝜃(𝐷𝐶𝑇(𝑥𝑡+1
𝑎𝑑𝑣), 𝑃 = 0.5); 

7:   IDCT (𝜃(𝐷𝐶𝑇(𝑥𝑡+1
𝑎𝑑𝑣), 𝑃 = 0.5) transformation will be performed on the adversary sample;  

8: return 𝑥𝑎𝑑𝑣 = 𝑥𝑡+1
𝑎𝑑𝑣 

Transformation of frequency domain images is shown in Figure 4. Input a clean 

image, carry out back propagation after obtaining the prediction result, and move 

forward in the direction of maximum loss to generate adversary perturbation. The 

perturbation is added to the clean image, and then the DCT frequency domain 

transform is performed. In the frequency domain, the Gaussian blur, sharpen, rotation 

and scaling transform are randomly selected, and the transformation probability is 0.5. 

After the transformation is completed, the IDCT is switched from the frequency 

domain to the spatial domain, and then the iterative input is performed again, and the 

final adversary sample can be obtained until the stop condition is met. 
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Figure 4. Schematic diagram of generating adversary samples based on random transformation of frequency domain 

image. 

4. Experiment 

In this section, the ResNet50 model with CBAM attention mechanism is used as 

the attacked white-box model. At the same time, the frequency domain FDRT random 

transformation framework proposed by us is introduced to generate adversary samples. 

The finally generated adversary samples are transferred to other models as black-box 

models to explore the change of transferability success rate and the specific impact of 

different parameters on transferability success rate. 

4.1. Experimental setup 

Based on the ImageNet dataset, this article selected 1000 samples as test data to 

ensure a 100% recognition success rate for the model. 

The evaluation of adversarial samples is one of the important means to evaluate 

the robustness of deep learning models. Attack success rate and image visualization 

analysis are the two main indicators for adversarial sample evaluation. 

Attack success rate refers to the success rate of attackers using adversarial sample 

attack models. In general, the attack success rate can be represented by Equation (17). 

𝐴𝑆𝑅 =
∑ [𝑓(𝑥𝑖 + 𝛿𝑖) ≠ 𝑦𝑖]𝑛

𝑖=1

𝑛
 (17) 

Among them, 𝑛 is the number of test samples, 𝑥𝑖 is the original test sample, 

𝛿𝑖 is the adversarial perturbation added to 𝑥𝑖, 𝑓 is the classifier of the deep learning 

model, and 𝑦𝑖  is the true label of sample 𝑥𝑖 . If the adversarial perturbation can 

successfully change the classification results of the model, i.e. 𝑓(𝑥𝑖 + 𝛿𝑖) ≠ 𝑦𝑖, then 

this sample is considered a successful attack. The higher the success rate of the attack, 

the poorer the robustness of the model, and the stronger the performance of the attack 

algorithm. 

Image visualization analysis can help researchers better understand adversarial 

samples. In general, it is possible to compare the original image with the adversarial 

sample. This method can provide a more intuitive understanding of the impact of 

adversarial perturbations on the original image, as well as the differences between 

adversarial samples and the original image. Another visualization method is to use 

thermal maps to determine the focus of attention of the model, in order to better 
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understand adversarial samples. 

This article will discuss the maximum perturbation value 𝜀 set to 20/255, except 

for FGSM, the perturbation step size of attack algorithms is set to 2/255, the number 

of iterations is set to 10, the momentum attenuation factor is 1, and the transformation 

probability 𝑃 = 0.5. 

4.2. Attack experiment 

In this experiment, two white-box models, ResNet50 and CBAM-ResNet50, 

were selected and used to generate adversarial samples. At the same time, two black-

box models were selected: Inception V3 and Inception-ResNet V2, which were unable 

to understand their internal structure. Then five adversarial sample algorithms will be 

used: FGSM, I-FGSM, MI-FGSM, PGD, and NI-FGSM to attack these models. 

Among them, experiments without perturbation and with random noise were added as 

a comparison. The experimental results are shown in Table 1.  

Table 1. CBAM + FDRT white-box and black-box attack experiment results. 

 

Attack ResNet50 Inception-V3 Inception-ResNet V2 Average 

No Perturbation 0% 0% 0% 
- 

Random Noise 5.4% 2.1% 0.9% 

ResNet50 

FGSM 76.5% 24.6% 28.3% 26.45% 

I-FGSM 89.3% 29.0% 29.9% 29.45% 

MI-FGSM 97.0% 33.5% 34.1% 33.8% 

PGD 100% 36.7% 35.2% 35.95% 

NI-FGSM 100% 48.9% 50.4% 49.65% 

CBAM-ResNet50 

FDRT-FGSM 81.3% 35.3% 34.1% 34.7% 

FDRT-I-FGSM 89.9% 39.4% 38.9% 39.15% 

FDRT-MI-FGSM 100% 42.3% 44.7% 43.5% 

FDRT-PGD 100% 45.7% 48.0% 46.85% 

FDRT-NI-FGSM 100% 60.5% 59.6% 60.05% 

As can be seen from Table 1, on the white-box model ResNet50, after the 

combination of CBAM attention mechanism and FDRT framework, the attack 

performance adversary samples have been significantly improved. For example, when 

FDRT-FGSM is used, the attack success rate increases from 76.5% to 81.3%. 

Similarly, when using FDRT-I-FGSM and FDRT-MI-FGSM, the attack success rate 

has been significantly improved, from 89.3% and 97.0% to 89.9% and 100%, 

respectively. On the black-box models Inception V3 and Inception-ResNet V2, the 

transferability performance against various attacks has also been improved after the 

combination of CBAM ResNet50 and FDRT frameworks. For example, when FDRT-

FGSM and FDRT-I-FGSM are used, the attack success rate increases from 24.6% and 

29.0% to 35.3% and 39.4% respectively. When FDRT-MI-FGSM is used, the attack 

success rate increases from 34.1% to 42.3%. When FDRT-NI-FGSM is used, the 

attack success rate on the black-box model increases from 48.9% and 50.4% to 60.5% 

and 59.6%, respectively. Finally, we also calculate the average transferability attack 
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success rate, and the results show that the transferability attack success rate is 

significantly improved after adding CBAM attention mechanism and FDRT 

framework to each attack. Therefore, the combination of CBAM attention mechanism 

and FDRT framework can significantly improve the attack success rate and transfer 

attack performance and the attack success rate is higher than that of using one of the 

methods alone. 

Transferability analysis 

The CBAM attention mechanism improves model robustness and the 

transferability of adversarial samples by guiding the model to emphasize crucial 

features in the input image. This reduces the model’s vulnerability to attacks. CBAM 

combines channel attention and spatial attention, making the model more focused on 

meaningful areas in the image, thereby improving the robustness of the model. By 

generating perturbations that ultimately lead to classification errors in the robust 

region of the image, CBAM can enhance the performance of transfer attacks by 

enabling the generated perturbations to have better generalization performance on 

other models. 

Secondly, the frequency domain-based image random transformation framework 

FDRT can further improve the transferability of performance of transfer attack. FDRT 

destroys local feature information in adversarial samples by randomly transforming 

images in the frequency domain. This transformation diversifies the adversarial 

samples in multiple iterations, forcing the model to generate stronger adversarial 

perturbation that are more robust and diverse. The frequency domain transformation 

mainly targets the high-frequency parts (usually details) in the image, and by 

randomizing these details, it disrupts the local features of the original image, making 

it more difficult for the adversarial sample features to be captured and recognized by 

the model. 

Therefore, the combination of CBAM and FDRT utilizes the advantages of 

attention mechanism and frequency domain transformation, which can further enhance 

the performance of transfer attacks. The attention mechanism can guide the model to 

focus on important image features from a global perspective, improve the robustness 

of the model, and force attacks to generate perturbations in key areas of the image 

during the generation of perturbations; The frequency domain transformation can 

destroy local features in the image, and make the generated adversarial perturbation 

more random and diverse, thereby making the adversarial samples more robust and 

transferable. In summary, the combination of these two methods can improve the 

robustness of adversarial perturbation at both global and local levels, thereby 

enhancing the performance of transfer attacks. 

4.3. Hyper-parameters 

In order to further explore how to improve the performance of transfer attacks, 

this section of the experiment investigated the effects of iteration number, and 

transformation probability 𝑃 on the transferability of adversarial samples. 

4.3.1. Impact of iteration times on transferability 

Based on the previous experimental setup, this paper gradually increases the 

number of iterations (starting from 2, in steps of 4, with the maximum perturbation 
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value of 20/255), and studies the relationship between the number of iterations and the 

success rate of transfer attack. FGSM algorithm belongs to one-time iterative 

algorithm, so it does not need to be discussed. Figure 5 shows the relationship between 

the number of iterations and the success rate of transfer attack. The results show that 

with the increase of iteration rounds, the success rate of white-box attack of FDRT-I-

FGSM method is significantly improved, while the success rate of black-box transfer 

attack is slightly decreased at about 10. This is because as the number of iterations 

increases, the degree of fitting against samples in the classification model will be 

higher and higher, so the transferability will decline. However, for FDRT-MI-FGSM, 

FDRT-PGD and FDRT-NI-FGSM, the success rate of black-box attack has been 

significantly improved with the increase of the number of iterations, indicating that 

the influence factors in these methods can better match the number of iterations, such 

as momentum method and NAG. However, the increase in the number of iterations 

also means an increase in computational overhead. Therefore, the number of iterations 

is selected as 10 to ensure the high success rate of white-box and black-box attacks 

and the fast generation rate of adversary samples. 

 
Figure 5. The impact of the maximum number of iterations on the success rate of transferability attack. 

4.3.2. Influence of frequency domain transformation probability P on 

transferability 

The previous part has verified the effectiveness of the CBAM + FDRT scheme 

proposed in this paper. In this section, the transformation probability P is further 

studied in the above experiments. In order to explore the impact of transformation 

probability P on the success rate of transferability, the value range of transformation 

probability P is fixed in the range of 0 to 1, and the step size is 0.1. For the sake of 

experimental preciseness (eliminating the influence of attention mechanism), only 

ResNet50 model is used here as the white-box model, and the adversary sample 

algorithm is FGSM, I-FGSM, MI-FGSM, PGD and NI-FGSM after adding FDRT 

framework. The experimental results are shown in Figure 6. 
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Figure 6. Influence of frequency domain transformation probability P on transferability attack success rate. 

It can be seen from Figure 6 that in the white-box model ResNet50, with the 

gradual increase of frequency domain transformation probability 𝑃, the attack success 

rate increases slightly. When 𝑃 = 0.5, the attack success rate is the highest. When 

𝑃 > 0.5, the attack success rate is floating, and the FDRT-I-FGSM attack success rate 

has a significant downward trend. In black-box attack, with the increase of frequency 

domain transformation probability 𝑃, the attack success rate increases significantly, 

and the average increase is about 5%. In particular, in the Inception-ResNet V2 model, 

the attack success rate of FDRT-MI-FGSM increases the most when 𝑃 changes from 

0.4 to 0.5. In general, whether it is a white-box attack or a black-box attack, the highest 

attack success rate is when 𝑃  = 0.5. Therefore, this paper selects the frequency 

domain transformation probability 𝑃 = 0.5 as the best parameter to achieve the best 

attack effect. 

4.4. Ablation experiment 

4.4.1. Analysis of experimental results of introducing attention mechanism to 

attack 

Since the experiment of attacking ResNet50 only with FDRT method has been 

discussed in the above experiment, the experiment in this section only needs to discuss 

the transferability experiment of introducing CBAM-ResNet50 model. In this 

experiment, two white-box models, ResNet50 and CBAM-ResNet50, were selected 

and used to generate adversary samples. At the same time, two black-box models are 

selected: Inception V3 and Inception ResNet-V2. These two black-box models cannot 

understand their internal structures. Then we use five sample algorithms: FGSM, I-

FGSM, MI-FGSM, PGD and NI-FGSM to attack these models. The experimental 

results are shown in Figure 7. According to the experimental results in Figure 7, the 

following conclusions can be drawn: 

1) After the ResNet50 model is used as the white-box model, and the five 

adversarial sample attack algorithms of FGSM, I-FGSM, MI-FGSM, PGD and 

NI-FGSM are used to generate adversary samples, the transferability attack on 

the CBAM-ResNet50 model will slightly reduce the attack success rate. However, 

when the CBAM-ResNet50 model is used as a white-box model to attack the 

ResNet50 model, the attack success rate increases slightly, which indicates that 

the CBAM-ResNet50 model is more robust to transferability attacks. 
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2) From the perspective of the black-box model, under the attack using ResNet50 

and CBAM- ResNet50 as the white-box model, CBAM-ResNet50 model has a 

higher transfer attack success rate than ResNet50 model. At the same time, the 

adversary samples generated by NI-FGSM algorithm have the highest attack 

accuracy. 

3) Compared with the improved transferability of CBAM-ResNet50 model, the 

CBAM+FDRT method exhibits even better performance enhancement on attack 

transferability, validating its effectiveness. 

 
Figure 7. Comparative experimental results of attacks with CBAM attention mechanism. 

4.4.2. Visual analysis and comparison 

In order to judge whether the perturbation generated by the model with attention 

mechanism is more specific to the robustness characteristics of the image, we use 

ResNet50 model and CBAM-ResNet50 model to generate five adversary sample 

algorithms for an image respectively, and conduct heatmap visual analysis on the 

generated adversary samples. Visualization of samples using heatmap can more 

intuitively show the contribution of each pixel to the classification results, as shown 

in Figure 8. We compare ResNet50 model and CBAM-ResNet50 model, and finds 

that the two models show different color distributions on the heatmap. Specifically, in 

the ResNet50 model, it is found that the model’s attention has been diverted. The 

attention should be on the target object in the original image, while the attention in the 

adversary sample has been diverted to the background unrelated to the classification, 

which can also explain why the adversary sample can successfully attack the model, 
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because the model’s attention is not at all on the feature points of the objects in the 

image. In the CBAM-ResNet50 model, it can be found that the attention has not been 

diverted, and with the strengthening of the algorithm, the attention has converged. The 

main reason is that the CBAM mechanism makes the model more focused, and makes 

the added adversary perturbation more focused, and all of them are on important 

features. This result also verifies the effectiveness of CBAM mechanism in improving 

the robustness of the model. 

 
Figure 8. Visualization heatmap of adversarial samples before and after adding attention mechanism. 

5. Conclusion 

While the white-box attack algorithm is becoming more and more perfect, the 

more realistic black-box transfer attack in the real scene is subject to the poor 

transferability effect of the adversary samples produced by the current attack algorithm. 

Aiming at this urgent problem of poor transferability of adversary samples, we 

introduce ResNet50 model based on CBAM attention mechanism as the enhanced 

white-box model, an image random transformation framework FDRT based on 

frequency domain is proposed to improve the transferability of adversary sample. 

Experimental results demonstrate that the suggested method for enhancing adversary 

sample transferability leads to substantial improvements in the transferability of both 

the existing basic attack algorithm, the enhanced algorithm, and the state-of-the-art 

(SOTA) attack algorithm. Specifically, the proposed method based on attention 

mechanism and frequency domain transformation, also considering the human eye 

awareness and computational overhead, can improve the average black-box 

transferability attack success rate of the three models from 49.65% of NI-FGSM to 

60.05% of FDRT-NI-FGSM. The success rate of black-box attacks exceeds 6% on 

average across the five methods. The experimental findings demonstrate that our 

proposed approach greatly enhances the performance of transfer attacks while 

maintaining imperceptibility to the human eye. 
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