pisco_log Publisher
Page Header

Identification of citrus orchard under vegetation indexes using multi-temporal remote sensing

Chenxin Liang, Qiting Huang, Si Wang, Cong Wan, Qiangyi Yu, Wenbin Wu

Article ID: 2053
Vol 3, Issue 1, 2022

VIEWS - 63 (Abstract)

Abstract

Citrus has been widely planted in the south of China in recent years. However, the multiple crop types and frequent cloud cover locally have posed a great challenge to the direct identification of the large-scale citrus orchard using the spectral information. In this study, a systematic approach was developed to identify the citrus orchard using the phenological characteristics of citrus during the fruit expansion stage, where the threshold value was determined to the key time window.
Taking the Wuming District of Nanning Guangxi Zhuang Autonomous Region in southwest China as the study area, an empirical investigation was carried out using the Google Earth Engine platform. 1 751 ground samples were also collected in the field for validation. Meanwhile, the cloud coverage assessment was performed on the Sentinel-2 images over the whole year of 2018. According to the citrus phenology in the study area, the characteristics of flowering were not outstanding in the first half of 2018 (the flowering period of citrus), while the key identification features were found in the second half of 2018 (the peak stage of citrus fruit growth and expansion). As such, the second half of 2018 was determined as the study period, considering the data availability and citrus phenological stage. Then, a multi-temporal image dataset was obtained from August to December. The specific procedure was as follows. Firstly, some indices were calculated using the time series Sentinel-2 data in 2018, including the multiple vegetation indices (e.g. Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Difference Vegetation Index (DVI)), and Sentinel-derived Red-Edge Spectral Indices (RESI). The vegetation information of multi-temporal remote sensing was then obtained for the entire study area. Secondly, the vegetation information of various planting types was compared in different growing periods, according to the measured ground data. The results showed that there was no outstanding spectral difference between the citrus orchards and other vegetation types (e.g. sugarcane, banana, maize, and rice) in the study area. However, the vegetation indices of multi-temporal remote sensing presented that the NDVI of 0.47 for the citrus orchards was distinctly lower than that for the other vegetation types in October. There was also a lower GNDVI of citrus orchards in October and November. But there was no difference in the DVI of citrus orchards from other vegetation. Furthermore, the fruit expansion stage of citrus was located from September to October, indicating weak vegetation information of citrus. Nevertheless, there were significant differences among different vegetation indices, where the NDVI presented the highest. In addition, a renormalization of vegetation indices was further constructed to identify the spatial distribution of citrus in the study area by a threshold, according to the NDVI in October. The overall accuracy of citrus orchards reached 82.75% using the renormalization of NDVI, where the Kappa coefficient was 0.66, indicating a better identification, compared with the rest of renormalized vegetation indices (GNDVI, DVI, and RESI). The NDVI presented more complete identification for the citrus orchards, whereas, the GNDVI performed more fragmented identification. Consequently, the total area of citrus planting was calculated as 3.42×104 hm2 using the phenological parameters of citrus orchards. This finding can provide strong theoretical and practical support to timely mapping the citrus orchards using remote sensing.


Keywords

remote sensing; classification; phenology; citrus; vegetation index; Sentinel-2; Google Earth Engine

Full Text:

PDF



References

1. Zhao Tong. The Study on Agricultural Climate Regionalization of Citrus in Chongqing Province Based on GIS[D]. Chongqing: Chongqing Normal University, 2018. (in Chinese with English abstract)

2. Bai Qinfeng, Huo Zhiguo, Wang Jinghong, et al. Progress in research on meteorological disaster indicators of major fruit trees in China[J]. Journal of Fruit Science, 2019, 36(9): 1229-1243. (in Chinese with English abstract)

3. Lan Hanqi, Deng Xiuxin. Industrial poverty alleviation mode supported by research team of pomology discipline-Based on the cases by citrus team of Huazhong Agricultural University[J]. Journal of Agricultural Science and Technology, 2019, 21(4): 1-7. (in Chinese with English abstract)

4. Liu Yuting. Study on the Information Extraction of Citrus Field in South of Jiangxi Province and the Estimation of Chlorophyll by Remote Sensing[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. (in Chinese with English abstract)

5. Qi Chunjie, Gu Yumeng, Zeng Yan. Process of citrus industry economy in China[J]. Journal of Huazhong Agricultural University, 2021, 40(1): 58-69. (in Chinese with English abstract)

6. Xiang Yun, Liang Xiaoli, Lu Qian. Comparative advantages and influencing factors of citrus production in Guangxi: An empirical analysis based on the data of 29 major citrus producing counties/districts[J]. Chinese Journal of Tropical Agriculture, 2020, 40(11): 126-134. (in Chinese with English abstract)

7. Zhu Y H, Yang G J, Yang H, et al. Identification of apple orchard planting year based on spatiotemporally fused satellite images and clustering analysis of foliage phenophase[J/OL]. Remote Sensing, 2020, 12(7), [2020-04-03]. https: //www. researchgate.net/ publication/340511732_Identification_of_ Apple_Orchard_Planting_Year_Based_on_Spatiotemporally_Fused_Satellite_Images_and_Clustering_Analysis_of_Foliage_Phenophase.

8. Reis S, Taşdemir K. Identification of hazelnut fields using spectral and Gabor textural features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(5): 652-661.

9. Shrivastava R J, Gebelein J L. Land cover classification and economic assessment of citrus groves using remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 61(5): 341-353.

10. Wang Shuai. Study on the Information Extraction Method of Citrus Orchard Based on Object-Oriented[D]. Ganzhou: Jiangxi University of Science and Technology, 2017. (in Chinese with English abstract)

11. Zhang Qiming, Xu Hanzeyu, Jiang Feng, et al. Spatial distribution characters of citrus orchards in the south of Jiangxi Province[J]. Jiangxi Science, 2018, 36(4): 591-598. (in Chinese with English abstract)

12. Chen Youliang, Hu Jinjing, Wang Zhaoru, et al. An analysis of the dynamic changes in the area of orange orchard in south Jiangxi Province: A case study in Xinfeng County[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(5): 884-894. (in Chinese with English abstract)

13. Chen Youliang, Hu Jinjing, Wang Zhaoru, et al. Research on dynamic changes of Gannan citrus orchard areas: A case study in Xunwu County[J]. Journal of Jiangxi University of Science and Technology, 2017, 38(5): 19-25. (in Chinese with English abstract)

14. Xu Hanzeyu, Liu Chong, Qi Shuhua, et al. The detection of citrus orchards in southern Jiangxi Province with Landsat images using random forest classifier[J]. Journal of Jiangxi Normal University: Natural Science Edition, 2018, 42(4): 434-440. (in Chinese with English abstract)

15. Ren Chuanshuai, Huang Wenjiang, Ye Huichun, et al. Extraction of banana orchards based on GF-2 satellite imagery and its accuracy analysis[J]. Remote Sensing of Information, 2017, 32(6): 78-84. (in Chinese with English abstract)

16. Song Rongjie, Ning Jifeng, Chang Qingrui, et al. Kiwifruit orchard mapping based on wavelet textures and random forest[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 222-231. (in Chinese with English abstract)

17. Song Q, Hu Q, Zhou Q B, et al. In-season crop mapping with GF-1/WFV data by combining object-based image analysis and random forest[J/OL]. Remote Sensing, [2017-11-16]https: //doi. org/10. 3390/rs9111184.

18. Talema T, Hailu B T. Mapping rice crop using sentinels (1 SAR and 2 MSI) images in tropical area: A case study in Fogera wereda, Ethiopia[J/OL]. Remote Sensing Applications: Society and Environment, 2020-04-22] http: //doi. org/10. 1016/j. rsase. 2020. 100290.

19. Dong J W, Xiao X M, Menarguez M A, et al. Mapping paddy rice planting area in Northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine[J]. Remote Sensing of Environment, 2016, 185: 142-154.

20. D'Andrimont R, Taymans M, Lemoine G, et al. Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and -2 time series[J/OL]. Remote Sensing of Environment, [2020-03-15]http: //doi. org/10. 1016/j. rse. 2020. 111660.

21. Liang Shouzhen, Chen Jinsong, Wu Bingfang, et al. Extracting rubber plantation with decision tree model based on object-oriented method[J]. Journal of Remote Sensing, 2015, 19(3): 135-144. (in Chinese with English abstract)

22. Li Longwei, Li Nan, Lu Dengsheng. Mapping tea gardens spatial distribution in northwestern Zhejiang Province using multi-temporal Sentinel-2 imagery[J]. Journal of Zhejiang A&F University, 2019, 36(5): 841-848. (in Chinese with English abstract)

23. Gong P, Liu H, Zhang M N, et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6): 370-373.

24. He Zhaoxin, Zhang Miao, Wu Bingfang, et al. Extraction of summer crop in Jiangsu based on Google Earth Engine[J]. Journal of Geo-information Science, 2019, 21(5): 126-140. (in Chinese with English abstract)

25. Zhong Qi, Luo Jin, Qi Shuhua. Sample sensitivity analysis of citrus orchards extracted by random forest classification algorithm[J]. Jiangxi Science, 2019, 37(5): 664-669. (in Chinese with English abstract)

26. da Silva J C A, Leonel-Junior A H S, Rossi F S, et al. Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform[J/OL]. Computers and Electronics in Agriculture, [2020-03-15]http://doi. org/10. 1016/j. compag. 2019. 105194.

27. Jin Yunxiang, Xu Bin, Yang Xiuchun, et al. Remote sensing dynamic estimation of grass production in Xilinguole, Inner Mongolia[J]. Scientia Sinica: Vitae, 2011, 41(12): 1185-1195. (in Chinese with English abstract)

28. Xin Xiaoping, Zhang Baohui, Li Gang, et al. Variation in spatial pattern of grassland biomass in China from 1982 to 2003[J]. Journal of Natural Resources, 2009, 24(9): 1582-1592. (in Chinese with English abstract)

29. Yang Hongwei, Tong Xiaohua. Distribution information extraction of rubber woods using remote sensing images with high resolution[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 411-416, 421. (in Chinese with English abstract)

30. Regniers O, Bombrun L, Guyon D, et al. Wavelet-based texture features for the classification of age classes in a maritime pine forest[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 621-625.

31. Qin Aiying. Research on Rural Land Management Mode in Wuming District of Nannnign City Under the Background of Agricultural Industrialization[D]. Nanning: Guangxi University, 2019. (in Chinese with English abstract)

32. Hu Peimin, Li Zhengyue, Li Chuanren, et al. The retrieval of citrus spatial distribution in Yidu City using remote sensing[J]. Hubei Agricultural Sciences, 2014, 53(4): 795-798. (in Chinese with English abstract)

33. Wang Lijuan, Kong Yuru, Yang Xiaodong, et al. Classification of land use in farming areas based on feature optimization random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 244-250. (in Chinese with English abstract)

34. Han Wenting, Peng Xingshuo, Zhang Liyuan, et al. Summer maize yield estimation based on vegetation index derived from multi-temporal UAV remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 148-155. (in Chinese with English abstract)

35. Deng Jiang, Gu Haibin, Wang Ze, et al. Estimation and validation of above-ground biomass of cotton during main growth period using Unmanned Aerial Vehicle (UAV)[J]. Agricultural Research in the Arid Areas, 2019, 37(5): 55-61, (in Chinese with English abstract)

36. Xiao C W, Li P, Feng Z M, et al. Sentinel-2 red-edge spectral indices (RESI) suitability for mapping rubber boom in Luang Namtha Province, northern Lao PDR[J/OL]. International Journal of Applied Earth Observation and Geoinformation, [2020-12-01]https: //doi. org/10. 1016/j. jag. 2020. 102176.

37. Meng Liangli, Zhong Shiquan, Mo Jianfei, et al. Research on eucalyptus information extraction based on GF-1 object- oriented[J]. Geospatial Information, 2019, 17(8): 24-29. (in Chinese with English abstract)

38. Li Yucheng, Zhang Jun, Xue Yufei, et al. Remote sensing image extraction for rubber forest distribution in the border regions of China, Laos and Myanmar based on Google Earth Engine platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 174-181. (in Chinese with English abstract)

39. Xu Hanzeyu, Liu Chong, Wang Junbang, et al. Study on extraction of citrus orchard in Gannan region based on Google Earth Engine platform[J]. Journal of Geo-Information Science, 2018, 20(3): 396-404. (in Chinese with English abstract


DOI: https://doi.org/10.54517/ama.v3i1.2053
(63 Abstract Views, 0 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Chenxin Liang, Qiting Huang, Si Wang, Cong Wan, Qiangyi Yu, Wenbin Wu

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.