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ABSTRACT 

Citrus is widely planted in southern China. Due to cloudy and rainy weather, complex planting types, and other 

factors, it is difficult to use spectral information to directly identify citrus orchard information. Based on the unique 

phenological characteristics of citrus, this study put forward the hypothesis that “the vegetation information of citrus 

orchards may be weakened during the growth and expansion of citrus fruit”. According to this feature, a method of citrus 

orchard information identification is proposed, and the threshold of the key time window is determined. Taking Wuming 

District, Nanning City, and Guangxi Zhuang Autonomous Region as the research area, an empirical study on remote 

sensing identification of citrus orchard information is carried out. First, multi-temporal Sentinel-2 remote sensing images 

of the study area in 2018 were obtained, and a normalized difference vegetation index was constructed. NDVI, Green 

Normalized Difference Vegetation Index (GNDVI), Difference Vegetation Index (DVI), Sentinel-derived red-edge 

spectral indices (RESI), and other vegetation spectral indices Secondly, according to the ground sample point information, 

the difference in remote sensing vegetation information of different vegetation types in different periods was compared, 

and then the optimal features of citrus orchard identification were determined. The results showed that there was no 

significant difference in spectral characteristics between citrus orchards and other major crop types in the study area (such 

as sugarcane, banana, corn, rice, etc.), but the multi-temporal remote sensing vegetation index of the study area showed 

that the NDVI of citrus orchards in October was 0.47 lower than that of November, which was significantly lower than 

that of other crop types. In October, the GNDVI of the citrus orchard also showed a low value of 0.43, but the difference 

was not obvious compared with other months. However, the dispersion degree of citrus orchard DVI was low, and the 

separation was not strong. According to the crop phenological calendar, the period of rapid expansion of citrus fruits was 

from September to October, which verified the scientific hypothesis proposed in this study that the vegetation information 

of citrus orchards would be weakened during this period. The dispersion degree of different vegetation indexes in the 

citrus fruit expansion stage was obviously different, and the dispersion degree of NDVI was the highest, and the difference 

was the strongest. According to the phenological characteristics of the citrus orchard NDVI in October, to further build 
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the normalized index, by using the threshold value method to identify the spatial distribution of the citrus orchard, the 

identification method had an overall accuracy of 82.75%, better than other identification results of vegetation index. The 

results of the study for citrus orchard information and remote sensing identification research provide better support for 

theory and practice. 

Keywords: remote sensing; classification; phenology; citrus; vegetation index; Sentinel-2; Google earth engine 

1. Introduction 
China is one of the important origin countries for Citrus (Citrus reticulata Banco), with a cultivation 

history of more than 4000 years. As an evergreen fruit tree, citrus is very suitable for planting in southern 
China, and the citrus industry has also become a characteristic pillar industry in poverty alleviation and rural 
revitalization in southern China[1–3]. According to statistics[4,5], in 2018, the planting area of citrus in China 
reached 2.49 × 106 hm2, surpassing apple to become the fruit with the highest cultivation area and yield in 
China. Among them, the output and planting area of Guangxi citrus orchards showed an increasing trend in 
recent years. In 2018, compared with the previous year, the expansion of planting was 6.67 × 104 hm2, the 
planting area reached 3.88 × 105 hm2, ranking first in China, and the output value exceeded 100 billion yuan[6]. 
The citrus industry expands ceaselessly and develops toward intensification and scale. It is of great significance 
to accurately obtain the planting area and spatial distribution information of citrus orchards and explore the 
changes in the area of citrus orchards and their economic, social, and ecological benefits so as to guide the 
healthy development of the citrus industry. 

Remote sensing technology provides the possibility to obtain spatial distribution information about 
vegetation in a real-time, accurate, and large-scale manner[7–9]. In recent years, remote sensing mapping 
technology for annual crops such as rice, corn, wheat, and soybean has become increasingly mature, and 
remote sensing mapping research for perennial crops such as citrus is gradually emerging. Wang [10] used the 
Gaofen No. 1 image combined with an object-oriented method to extract citrus orchards in layers. Zhang et 
al.[11] and Chen et al.[12,13] respectively used Google Earth images and Landsat images to extract citrus orchard 
information and analyze the spatial characteristics and area changes of citrus in counties in southern Jiangxi, 
China. Xu et al.[14] used a Landsat image combined with a random forest algorithm to extract information about 
citrus orchards in spring and autumn. Crops and sparse woodland had similar spectral characteristics to young 
citrus orchards and were prone to mixed classification. The misclassification error between citrus orchards and 
cultivated land was about 20%. Most of the existing studies on remote sensing extraction of citrus orchards are 
concentrated in southern Jiangxi, where there are few orchards except citrus, which can theoretically simplify 
the complexity of remote sensing recognition objects[15]. However, these studies generally found that when the 
spectral information of a single period image was used to extract the distribution information of citrus orchards, 
the feature description of remote sensing identification of citrus orchards was insufficient. 

Compared with southern Jiangxi, the planting types of orchards in Guangxi are more complex, and the 
spectral characteristics of different orchards are similar. Therefore, under the conditions of insufficient optical 
remote sensing images and complex orchard planting types, it is more challenging to use spectral information 
to carry out remote sensing identification of citrus orchard information in Guangxi[16]. In the case of insufficient 
spectral information, phenological information can be used as an important supplement to spectral information. 
Some studies began to pay attention to the role of multi-time window phenological information in the remote 
sensing classification of annual crops[17–19]. For example, rape flowers turn yellow at the flowering stage, and 
the color characteristics are the most obvious at the most vigorous flowering stage, while the color 
characteristics weaken during the fading process. Based on this, some studies have proposed a normalized 
yellow index to extract the spatial distribution information of rape by accurately detecting the peak at the 
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flowering stage[20]. Some studies also try to apply phenological information to the remote-sensing classification 
of perennial crops. For example, Liang et al.[21] used Landsat images to identify the spatial distribution of 
perennial rubber trees by taking the February dormant period in the deciduous period as the key phenological 
period. Based on Sentinel multi-spectral images of four seasons, Li et al.[22] analyzed the phenology and 
spectral characteristics of tea gardens, finally determined May as the key phenological period, constructed the 
normalized tea garden index, and extracted the spatial distribution information of perennial tea gardens. Since 
the key phenological periods and characteristics of citrus are different among perennial crops, how to 
determine the key phenological periods and characteristics of citrus is still rarely reported. 

In conclusion, considering that the citrus fruit hanging stage carries specific fruit color characteristics, it 
is speculated that the vegetation information before and after the citrus fruit growth expansion stage may 
change significantly, and then it is hypothesized that the citrus fruit growth expansion stage may become the 
key phenological stage for remote sensing identification of citrus orchards. Based on the scientific hypothesis, 
this research chose cloudy and rainy climate, orchard type complex, and citrus orchard to expand rapidly in 
Guangxi Zhuang Autonomous Region to carry out empirical research, through analysis of spectral 
characteristics of different crops in different phases, find the citrus orchard information to identify key 
phenological periods and the optimal vegetation index for cloudy and rainy, complex planting conditions, To 
explore a method of citrus orchard information recognition based on multi-temporal image data so as to provide 
a reference for the scientific construction of a citrus orchard remote sensing recognition index and the 
convenient and efficient extraction of spatial distribution information for citrus orchards. 

2. Materials and methods 

2.1. Overview of the study area 

This study selected Wuming District of Nanning City, Guangxi Zhuang Autonomous Region as the study 
area (22°59' N~23°33' N, 107°49' E~108°37' E). The total area of Wuming District is 3378 km2, surrounded 
by low mountains and hills, and the middle is a basin, which accounts for 63.50% of the whole area. According 
to the land use status[23], woodland is mainly distributed in the hills and gentle slopes around the region, while 
cultivated land is mainly distributed in the central basin (Figure 1). 

 
Figure 1. Geographical location, status of land cover, and sample points of the study area. 

The average annual temperature in the study area is 21.7 ℃, the extreme minimum temperature is –0.8 ℃, 
the average annual rainfall is 1100–1700 mm, and the average annual total sunshine hours is 1665 h. It is a 
subtropical monsoon climate with abundant light and heat, abundant rainfall, uniform rainfall, and the same 
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season of rain and heat. In autumn, the diurnal temperature difference is large, which is conducive to the 
accumulation of photosynthates. The cultivation structure of the study area is complex. In addition to citrus, 
rice, corn, sugarcane, banana and other crops are widely planted. The citrus orchards in the study area began 
to expand from 2012 to 2014–2015, and formed a certain scale. 

2.2. Data sources and preprocessing 

2.2.1. Remote sensing image data 

In this study, the Level-1C product (spatial resolution 10 m) of Sentinel-2 remote sensing data was 
selected, and the code was written online based on the Google Earth Engineering (GEE) platform to realize 
remote sensing data processing and analysis. The study area is covered by six images of Sentinel-2 data. The 
data product used is the atmospheric apparent reflectance data, which has been ortho-corrected and subpixel-
level geometric fine-tuning corrected. The platform can be used through the Application Programming 
Interface of the JavaScript Programming Language (API) to access the data and process the catalog 
(https://developers.google.com/earth-engine/datasets//COPERNICUS_S2). 

Under cloudy and rainy conditions, remote sensing images of the study area in each period are easily 
disturbed by clouds. How to effectively remove the influence of clouds is the premise of this study. In this 
study, Sentinel-2 images from 2017, 2018, and 2019 were widely collected. The quality of the images was first 
evaluated and screened based on GEE, and then cloud removal was performed on high-quality images through 
Quality Assessment (QA). Finally, the median value is edited from the time series of each image pixel, that is, 
the synthesis of the image time series[24]. The cloud coverage of each image was statistically analyzed, and the 
evaluation standard for high-quality images was set as cloud coverage less than or equal to 30%. It was found 
that the data quality in the first half of each year was generally poor (cloud coverage was more than 30%), and 
the data quality in the second half of each year was generally better than that in the first half of each year. 
Analysis of all the data from the second half of the year revealed a significant lack of high-quality images in 
2017; in the second half of 2019, the distribution of high-quality images was uneven, especially from October 
to November, with poor data quality and serious cloud cover. The data quality of the second half of 2018 was 
generally better than other years, and 2018 was finally determined as the study year. Previous studies have 
shown that[25] when crops enter the harvest period (that is, from October to December), the spectral 
characteristics of different crops differ greatly. At the same time, according to the cloud coverage analysis 
results of this study, the cloud pollution degree from October to December is low, and the image data quality 
is high, which can ensure the smooth development of the study. 

In order to further obtain the image data without cloud cover and covering crop harvest in a time span, 
the median function was used based on GEE to reconstruct the median value of each pixel of the image in the 
time series from October to December 2018, so as to carry out image cloud removal processing. The mass 
band QA60 of Sentinel-2 is a bit mask band with cloud band information, in which different cloud bits 
represent different meanings. Cloud bit Bit10 represents an opaque cloud, and cloud bit Bit11 represents a 
cirrus cloud. In this study, the cloud bits Bit10 and Bit11 are set to 0 to obtain a cloud mask. The cloud 
information in the image was removed, and the cloud-free reconstructed images from October to December 
were obtained after cutting and stitching[24,26]. In addition, based on the evaluation of cloud cover (Figure 2), 
the four months of August, October, November, and December with a large number of high-quality images 
(cloud coverage less than or equal to 30%) were further selected to construct multi-temporal data sets month 
by month for subsequent vegetation index extraction. 
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Figure 2. Cloud cover assessment of Sentinel-2 images in the study area in 2018. 

2.2.2. Field survey data 

The results of remote sensing image analysis need to be verified by comparing the relative truth value of 
the ground pixel scale. Ground-measured data are generally obtained by the ground sampling method or ground 
sample point method, in which ground quadrat refers to representative plots with a certain square area selected 
in the survey of plant communities. This method has a high cost and a complex process and is mostly used in 
quantitative remote sensing studies such as biomass estimation[27,28]. Ground sample points generally refer to 
geographical coordinates reflecting land cover types. This method has a low cost and a simple process and is 
mostly used in remote sensing image classification research. Considering previous studies[14–16] and sampling 
efficiency, this study used the ground sample point method to verify the accuracy of remote sensing 
classification results and completed the field ground sample point collection in the study area in December 
2019. Since the spatial distribution of citrus orchards will not change significantly within one year, it is 
reasonable to use the ground sample data of 2019 to verify the remote sensing classification results of 2018. 
At the same time, referring to Google Earth image comparison and confirmation, field survey interviews, and 
other means[29,30], further ensure the consistency of ground data and image data. 

Due to the large agricultural land area and many crop types in the central plain area, there were more 
sampling sites in towns and surrounding areas of the central plain. On the contrary, the surrounding mountains 
are mostly woodland, and the planting area of citrus and other crops is smaller, so the sampling points are 
smaller. In order to ensure the representativeness of the ground sample points, a total of 839 pure pixels were 
collected as citrus sample points, and 912 pure pixels were collected as non-citrus main crop sample points by 
focusing on townships and surrounding areas with large citrus planting areas in the study area (Figure 1(b)). 
The non-citrus sample sites included four main crop types, namely banana (fruit tree), sugarcane (cash crop), 
rice (paddy field), and maize (dry land). According to the local agricultural statistics[31], these crops accounted 
for a large proportion of the study area and were the main crop types except citrus. 

2.3. Multi-temporal vegetation information acquisition and analysis methods 

2.3.1. Phenology and spectral characteristics 

Citrus belongs to the rutaceae subordinate plants and is a tropical, subtropical evergreen fruit tree, the 
growth cycle is long, generally planting 2–3 A can bear fruit, fruit after maturity can be as long as 3–4 months, 
flowers and fruits at the same time. According to the field survey and interview results of this study, the 
phenological calendar of citrus and other major crop types in the study area was established, and the 
phenological information of different crops was analyzed (Figure 3). The main crops (including bananas, 
sugarcane, rice, and maize) in the study area were all in the peak growth stage in August. According to the 
planting habits of the study area, the large-scale harvest period of summer bananas is generally in September–
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December; rice is usually double rice; early rice is sown in March; and late rice is transplanted in July. The 
harvest period for late rice is from October to December. Sugarcane and corn are also harvested from October 
to December. 

 
Figure 3. Phenological calendar of major crops in the study area. 

The phenological information of mature citrus orchards generally showed the following characteristics: 
Because citrus is a broad-leaved evergreen species, the vegetation information remained stable throughout the 
year; in the first half of the year, citrus was in the flowering and summer end stages, and the leaves often 
obscured the flowers. The color of the evergreen canopy was basically the same as that of the flowering stage, 
and the spectral characteristics of the citrus orchard did not change obviously. In July, citrus entered the fruit 
expansion stage, the fruit began to grow and mature, and the color gradually changed from green to mature 
color (orange or yellow), and the occlusion effect of fruit expansion on canopy leaves gradually increased. 
Since October, when citrus enters the fruit maturity stage and winter shoot stage, flower bud differentiation 
and fruit ripening occur at the same time, and the influence of fruit occlusion on the canopy spectrum of citrus 
orchards is gradually weakened[32]. Based on the above characteristics, this study proposed a scientific 
hypothesis from the perspective of phenological information, that is, the vegetation information of citrus 
orchards may weaken during fruit growth and expansion, while the vegetation information of citrus orchards 
may gradually recover during fruit ripening and winter shoot occurrence. Therefore, July–October may be the 
ideal time window to identify citrus orchards. In particular, citrus orchards have the turning point of fruit 
ripening and new bud germination between October and November, and October, as the end of fruit expansion, 
is also the period when citrus orchards are most affected by mature fruits. 

According to the phenological characteristics of citrus, the reconstructed images removed the influence 
of clouds from October to December in the study area. Based on the main crop types in the study area, such as 
citrus, banana, sugarcane, rice, and maize, 30% of the ground-measured sample points were randomly selected 
to calculate the reflectance of each crop in each band (Figure 4). It was found that the overall variation trend 
of spectral reflectance of the five crop types in the study area was basically similar, and the numerical 
difference was not obvious, but there were still some differences in details. Among them, the reflectance of 
banana, sugarcane, and rice in red-edge band 1, red-edge band 2, and the near-infrared band was higher than 
that of citrus, and banana had the highest reflectance in these three bands, which were 0.01, 0.25, and 0.31, 
respectively. On the contrary, the reflectance of banana, sugarcane, and rice in the shortwave infrared bands 1 
and 2 is lower than that of citrus, and the reflectance of banana and rice in the shortwave infrared bands 1 and 
2 is the lowest, at 0.15 and 0.07, respectively. The reflectance of citrus in red band and red edge band 1 was 
0.09 and 0.12, which were slightly higher than those of banana and sugarcane but basically coincided with that 
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of rice and maize. The reflectance values of maize and citrus in nine bands were basically consistent with the 
trend. 

 
Figure 4. Spectral reflectance comparison of five major crops in the study area. 

Note: RE is red edge; NIR is near infrared; SWIR is short-wave infrared. 

2.3.2. Construction of vegetation index 

As can be seen from Figure 5, the differences in the information characteristics of the original bands of 
different crops are not obvious enough. Therefore, this study will construct a vegetation index by band 
combination to enhance the spectral differences among different vegetation. Considering the growth 
characteristics of different crop types in the study area, vegetation indices were calculated for the Sentinel-2 
image data of August, October, November, and December, which had low cloud coverage, to distinguish the 
differences in key phenological periods of the five major crop types in the study area. To compare the 
discriminating effects of different vegetation indices on citrus and other crop types, the Normalized Difference 
Vegetation Index was selected in this study. NDVI[33], Green Normalized Difference Vegetation Index 
(GNDVI)[34], Difference Vegetation Index DVI)[35]. Among them, GNDVI replaced the red band in NDVI with 
the green band, which had better stability. DVI can better identify vegetation and water. Meanwhile, Sentinel-
2 Red-edge Spectral Indices (RESI)[36] were introduced to compare with the commonly used vegetation indices 
NDVI, GNDVI, and DVI. The calculation of each vegetation index and RESI is shown in Equations (1)–(4): 

 
Figure 5. Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Difference 
Vegetation Index (DVI), and Sentinel-derived Red-edge Spectral Indices (RESI) of major crops at different time windows in the 
study area. 

NDVI =
𝜌NIR − 𝜌RED

𝜌NIR + 𝜌RED
 (1) 
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GNDVI =
𝜌NRR − 𝜌ୋୖ୉୉୒

𝜌NRR + 𝜌ୋୖ୉୉୒
 (2) 

DVI = 𝜌NIR − 𝜌RED (3) 

RESI =
𝜌ୖ୉ଷ + 𝜌ୖ୉ଶ − 𝜌ୖ୉ଵ

𝜌ୖ୉ଷ + 𝜌ୖ୉ଶ + 𝜌ୖ୉ଵ
 (4) 

where 𝜌NIR is the reflectance of near-infrared band, 𝜌GREEN is the reflectance of green light band, 𝜌RED is the 
reflectance of the red light band, ρRE1, ρRE2, and ρRE3 are the reflectance of three RED edge bands respectively. 

In order to further test the dispersion degree of 3 planting quilt index and RESI, the Coefficient of 
Variation (CV) was introduced for analysis. The coefficient of variation, namely the dispersion coefficient, is 
a normalized measure of the dispersion degree of the probability distribution. It is defined as the ratio of the 
standard deviation σ to the mean value μ, and its calculation is shown in Equation (5). 

CV =
𝜎

𝜇
 (5) 

2.3.3. Construction of spatial distribution identification method for citrus orchards 

In this study, the spatial distribution recognition method for citrus orchards was constructed in two steps. 
As a first step, according to the research area of orange, banana, sugarcane, rice, and maize, five types of main 
crops in different phenological characteristics of the time window, using the five kinds of crop growth and 
harvest period, based on the idea of simple to complex hierarchical extraction[37], for bananas, sugar cane, rice, 
and corn, after many filters to obtain the classification of the image, The specific steps are as follows: First, 
distinguish vegetation from non-vegetation, retain vegetation information, and eliminate non-vegetation 
information. Then, based on the peak growth period in August and the harvest period in November and 
December, the threshold values of the vegetation index in different periods were set to classify banana, 
sugarcane, rice, and maize layer by layer[38], and the four crop types were initially excluded. Finally, the pre-
classified images containing citrus orchard information were extracted. Second, on the basis of layer-by-layer 
classification, the unique characteristics and spectral changes of citrus in the phenological stage are used, and 
the normalized red-edge band index proposed by Xiao et al.[36] is referred to. According to the principle of “re-
normalized” vegetation index in different periods to enhance phenological differences, the re-normalization of 
vegetation indexes (RNVI) was further constructed, and its calculation is shown in Equation (6): 

RNVI =
VI௔ − VI௕

VI௔ + VI௕
 (6) 

where VIa is the maximum vegetation index synthesis value in the last month of the fruit expansion period, 
and VIb is the maximum vegetation index synthesis value in the first month after the end of the fruit expansion 
period. Based on the RNVI index, the determination rules of citrus orchards in the study area were established, 
and the pre-classified images containing information on citrus orchards were discriminated. If the RNVI value 
of the image to be determined was negative, the pixel was judged to be a citrus orchard. If the RNVI value of 
the image pixel to be determined is positive, the pixel is judged as a non-citrus orchard. Due to the influence 
of planting time and orchard management, some citrus phenophases in the study area were not synchronized, 
so only mature citrus orchards were identified in this study, not young ones. 

2.4. Accuracy evaluation 

In order to quantitatively evaluate the recognition accuracy of citrus orchards by different indexes, this 
study randomly acquired the confusion matrix of classification results calculated by 30% of sample points 
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collected to obtain User accuracy (UA) and Production accuracy (UA). PA), Overall accuracy (OA) and Kappa 
coefficient[33]. In this study, OA and Kappa coefficients were used to evaluate the overall classification effect, 
and UA and PA were used to evaluate the identification accuracy of citrus orchards, and the identification area 
of citrus orchards was tested. 

3. Results and analysis 

3.1. Crop phenology and spectral feature extraction 

By comparing the differences in vegetation indices of citrus orchards, bananas, sugarcane, rice, and maize 
in different time windows (Figure 5), it was found that the changes in NDVI reflectance of citrus orchards 
from October to November were significantly different from those of other crop types. Only the NDVI 
reflectance of citrus orchards decreased significantly in October to 0.47 and then increased to 0.56 in 
November. Corresponding to the phenological period of citrus, it was verified that October was the end of the 
expansion of citrus fruits, and its volume and etiolation weakened the canopy vegetation information, that is, 
the NDVI reflectance decreased. In November, the winter tip period began, and the canopy vegetation 
information of citrus orchards gradually rose; that is, the NDVI reflectance increased. In addition, during the 
key phenological stage of fruit ripening, there was little difference between the DVI and RESI index reflectance 
of citrus orchards and the other four crop types, and the GNDVI of citrus orchards was not obvious at this 
stage, indicating that only NDVI was highly sensitive to the characteristics of citrus fruit expansion. The 
variation in vegetation spectral characteristics caused by fruit growth and development is a unique feature of 
the fruit expansion period in citrus orchards. Different from citrus orchards, the NDVI reflectance of banana, 
sugarcane, and rice showed the same trend in the four-time windows. In August, the NDVI reflectance of the 
four crops showed the maximum value, which was 0.80, 0.68, and 0.72, respectively. However, from October 
to December, the NDVI reflectance of the four crops gradually decreased, and the NDVI reflectance of banana, 
sugarcane, rice, and maize in December was 0.60, 0.49, 0.31, and 0.41, respectively. 

Furthermore, the coefficients of variation of NDVI, GNDVI, DVI, and RESI in October of the 
phenological stage were calculated, which were 0.16, 0.12, 0.11, and 0.08, respectively. It was found that the 
CV value of NDVI in October of the citrus orchard was the highest, which was 0.16, indicating that the 
dispersion degree of NDVI among different crop types was the highest and the difference was the strongest. It 
has the best differentiation effect on citrus orchards. 

3.2. Identification results of spatial distribution of citrus orchards 

Because the normalized vegetation index NDVI has the highest dispersion degree for various crop types 
and the best separation ability for citrus orchards, this study selected NDVI to further construct the RNVI index 
to identify citrus orchards. Meanwhile, GNDVI, a green normalized vegetation index with similar 
characteristics of citrus fruit swelling but poor discrimination, was selected for comparison. However, 
featureless DVI and RESI were not selected for citrus orchard identification. Based on the RNVI formula, 
NDVI and GNDVI were selected as the re-normalized variables, and the reflectance of vegetation index in 
October (end of fruit swelling) and November (winter tip) were respectively used to construct the re-
normalized NDVI and re-normalized GNDVI. The citrus orchards in the study area in 2018 were identified by 
re-normalized NDVI and re-normalized GNDVI respectively (Figure 6). As can be seen from Figure 6, in 
terms of the overall spatial distribution of the recognition results of the two indexes, citrus orchards were 
mainly distributed in plain, basin, and low mountain slopes, and less in hills with high altitudes. The citrus 
orchards identified by normalized NDVI were relatively complete, while the citrus orchards identified by 
normalized GNDVI were relatively fragmented. 
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Figure 6. Identification of citrus orchards based on multitemporal vegetation indices of at the fruit expansion stage. 

The area of citrus orchards in each township in the study area was statistically analyzed (Figure 7). The 
total area of citrus orchards identified by normalized NDVI in the study area was 3.42 × 104 hm2, while that 
identified by normalized GNDVI was 3.47 × 104 hm2. The two orange orchards identified by the index had 
almost the same area. It is basically consistent with the statistical data of 3.07 × 104 hm2[6]. 
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Figure 7. Statistics of citrus orchards area in the study area. 

3.3. Accuracy evaluation and analysis 

In this study, the overall accuracy, Kappa coefficient, production accuracy and user accuracy were used 
as the evaluation indexes of citrus orchard identification results[33]. The accuracy verification results showed 
(Table 1) that the overall accuracy of the normalized NDVI for citrus orchard identification was 82.75%, and 
the Kappa coefficient was 0.66. This indicates that the vegetation index method based on phenological 
information has better identification accuracy in the complex planting types and cloudy and rainy conditions. 
The production accuracy of citrus orchards identified by normalized NDVI was 84.86%, and the user accuracy 
was 80.27%, both higher than 80%. The identification effect was good. The overall accuracy of normalized 
GNDVI for citrus orchard identification was 75.78%, and the Kappa coefficient was 0.51, which was lower 
than those of normalized NDVI. In addition, the production accuracy of the re-normalized GNDVI for citrus 
identification was only 66.03%, and the user accuracy was 79.94%. The miss error and miss core error of the 
re-normalized NDVI were inferior to those of the re-normalized NDVI, especially since the miss score 
phenomenon was more serious. 

Table 1. Comparisons of classification accuracy based on different vegetation indices. 

Vegetation indices Crop types Overall accuracy/% Kappa coefficient Producer’s accuracy/% The user’s accuracy/% 

NDVI Citrus orchard 82.75 0.66 84.86 80.27 

Other crops 80.81 85.30 

GNDVI Citrus orchard 75.78 0.51 66.03 79.94 

Other crops 84.76 73.06 

The misclassification phenomenon can be divided into two types: sparse forest land, sugarcane land, and 
buildings with high reflectance. Woodland misclassification errors mainly come from hilly areas in the 
northwest. Studies have proved that the spectra of sparse woodland and shrubs are similar to those of citrus 
young orchards, which are easy to confuse confused[39]. The study area has a large area of eucalyptus 
plantations in hilly and mountainous areas, which may be the result of image remote sensing classification. 
Since eucalyptus has no fruit and its phenological characteristics are significantly different from those of citrus 
orchards, and citrus shows regular characteristics of row-by-row planting, similar spacing between adjacent 
tree species, and low plant height, subsequent studies can prioritize the distribution of eucalyptus forests[37] to 
exclude the interference of sparse woodland on remote sensing recognition of citrus orchards. 
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The phenomenon of missing scores was mainly from citrus orchards with abnormal NDVI values. Citrus 
orchard of spectral characteristics and the environment, tree age, human management and so on has certain 
relations, although the citrus orchards in the study area are mostly prostagland orchards, but part of the growth 
stage of sync citrus orchard of easy leakage phenomenon, such as a new species of citrus seedlings growth to 
guaguo prostagland fruit trees need 2~3 a, and small seedlings, tree height, leaf blade sparsely, It is difficult to 
identify the phenological characteristics of fruit maturity. In addition, some orchards grew more vigorously 
after manual management, such as branch pulling treatment, and the tree species were more closely spaced 
when the fruit matured, so the NDVI value was high, and it was easy to miss the score. 

4. Conclusion 
This study based on the characteristics of the growth of citrus orchards is presented based on the 

phenological characteristics of the citrus orchard information identification method and compares the different 
vegetation indexes to identify the effect of citrus orchard information in different periods. With the introduction 
of phenology information, the perennial evergreen citrus fruit trees in remote sensing recognition spectral 
information is insufficient, leading to the following main conclusions: 

1) Confirmed the scientific hypothesis that “the expansion process of citrus fruit will lead to the gradual 
weakening of vegetation information”. Compared with other crop types in the study area, the 
characteristics of citrus orchards in this period were significantly different. The volume of fruits became 
larger, the color became mature, and the spectral information of citrus fruit leaves was affected to a certain 
extent, which was an important feature for identifying citrus orchards. 
2) The sensitivity differences of different vegetation indices to the changes in citrus fruit characteristics 
were found. Normalized Difference Vegetation Index (NDVI) was a better description of the fruit 
swelling characteristics, which was the weakening of vegetation information brought by fruit 
development; that is, the NDVI reflectance decreased significantly, the dispersion degree was large, and 
the separation was strong. These characteristics were significantly better than the Green Normalized 
Difference Vegetation Index (GNDVI), Normalized Difference Vegetation Index (Normalized Difference 
Vegetation Index), DVI, and Sentinel-derived Red-edge Spectral Indices (RESI). 
3) The different effects of different vegetation indices on the distribution and extraction of citrus orchards 
were clarified. Using the key phenology to extract the spatial distribution of citrus orchards in the study 
area, the overall accuracy of citrus orchards identified based on multi-temporal NDVI is 82.75%, which 
is better than that of GNDVI, which is 75.78%. Compared with the identification results, the citrus 
orchards identified by GNDVI are more broken, and the phenomenon of missing points and wrong points 
is serious. 

The key phenological period of citrus is just in the month with less cloud pollution from Sentinel-2 data, 
which partially solves the problem of insufficient multi-temporal data caused by cloudy and rainy weather in 
southern China. This method provides good theoretical and practical support for remote sensing identification 
of citrus orchards under complicated planting and cloudy and rainy conditions, and it also provides a reference 
and foundation for constructing a more universal citrus index. In this study, Sentinel-2 optical data is used, but 
radar data such as Sentinel-1 is not yet considered. Its main purpose is to reveal the effect of citrus fruit color 
change characteristics on citrus orchard identification through spectral changes. In the future, it is necessary 
to dig deep into the application potential of red edge band in citrus orchard information identification, introduce 
a variety of red edge band indices, and combine Sentinel-1 and other multi-source data with the unique 
phenological information of citrus orchards to find a better citrus identification method and further promote 
the innovation of remote sensing identification theory and method for citrus orchards. 
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