Open Access
Article
Article ID: 3196
PDF
by Praise Ewomaoghene Imonikebe, Obemeata Emmanuel Oriakpono, Helen Imafidor, Aroloye Ofo Numbere
Adv. Mod. Agric. 2025, 6(2);    131 Views
Received: 31 December 2024; Accepted: 7 April 2025; Available online: 15 April 2025;
Issue release: 30 June 2025
Abstract

This study investigates pesticide residues in cucumber plants and their impact on soil nematode populations while evaluating the effect of pesticides on cucumber growth and yield. Gas Chromatography Tandem Mass Spectrometry (GC-MS/MS) was used to quantify pesticide residues, comparing the results to the Maximum Residue Limits (MRLs) defined by the Codex Alimentarius. Significant differences in residue levels were found between various pesticides and application rates. Diazinon residues ranged from 0.86 to 2.28 mg/kg, exceeding the MRL of 0.1 mg/kg, indicating soil contamination. Endosulfan had the lowest residues, from 0.44 to 1.75 mg/kg, which were within acceptable limits. Conversely, Malathion and Methoxychlor residues notably surpassed their MRLs, raising potential safety concerns. Further analysis using a linear regression model revealed a negative correlation between pesticide application and soil nematode populations. There was a proportional decrease in nematode populations with increasing pesticide application rate, with Malathion having the most significant impact, followed by Endosulfan, Methoxychlor, and Diazinon. The impact of pesticide application on cucumber plant growth and yield was assessed using one-way ANOVA, which uncovered significant differences across treatment groups. While pesticides are effective for pest control, their application must be carefully managed to avoid phytotoxicity and ensure optimal plant and environmental health, thereby enhancing maximum productivity.

show more