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ABSTRACT 

The goal of this study is to investigate the extreme rainfall indices and their consequences on the local farming crop 

calendar among the agro-climatic zones (ACZs) of the Abiya watershed. Climate Hazards Group Infrared Precipitation 

(CHIRPS) provided long-term (1981–2019) rainfall data for 50 sample grid points with a spatial resolution of 5 × 5 km. 

Different crops are affected differently by the same extreme rainfall event depending on when it occurred and how extreme 

it was; this means crop calendars for a specific time may be properly governed by extreme climatic conditions. There 

hasn’t been a sufficient published study on extreme rainfall indices and their consequences on crop calendars by 

considering various ACZ in Ethiopia. The study defined local crop calendar timing and the consequences of the extreme 

rainfall indices through focus group discussions. INSTAT+ software was applied to calculate eight extreme rainfall 

indices. The indices were evaluated using Mann-Kendall’s (MK) and Sen’s slope techniques to identify trends and 

determine variations in the magnitude, respectively. Increase and decrease indications for various crop calendars were 

found in each ACZ. Further, going-up signals were seen in the highlands, midlands, and all ACZs for land preparation 

time (LPT), sowing and management time (SaMT), and harvesting and threshing time (HaTP), respectively. While HaTT 

was found to be uniform in all ACZs, some of the declining trends in the indices were detected for LPT and SaMT in the 

cold-highland and highland zones. The perceived trend in indices across the whole ACZ will have direct and unintended 

consequences for watershed crop production. The findings imply that to reduce the unfavourable consequences of these 

extreme rainfall occurrences in the agricultural sector, it is necessary to develop suitable crop varieties and drought-

tolerant crops, as well as an effective early warning system. 
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1. Introduction 
Climate change is causing extreme events all over the world, according to the Intergovernmental Panel 

on Climate Change’s (IPCC) Sixth Assessment Report. Climate extremes are caused by a number of factors, 
including atmospheric circulation, geography, and human activity[1]. The frequency and duration of severe 
events have risen because of climate variability in recent decades, and this trend is expected to continue in the 
future, leading to extreme ecological reactions[2,3]. For instance, from 1951 to 2010, there was a significant 
increase in global rainfall trends (1%–2% per decade)[4]. The consequences of climate extremes are more 
severe in unindustrialised countries than in industrialised countries, including Africa[5]. 
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Extreme climate events are the leading source of natural catastrophes in East Africa, particularly in Kenya, 
Ethiopia, and Somalia[6]. Precipitation predictions indicate an increase across Somalia and a decrease across 
central and northern Ethiopia[7]. It is expected that there will be more consecutive dry days and fewer 
consecutive wet days, respectively[8]. In recent decades, the extended rains in East Africa have tended to dry 
out due to natural decadal variability[9]. 

The decadal Sea Surface Temperature (SST) variability in the Pacific Ocean can be used to explain 
regional variations[10]. The SST variability linked with the El Niño-Southern Oscillation (ENSO) is the most 
important source of forcing a regular drought in the Horn of Africa[9]. Within the area, the variations in rainfall 
amounts are highly related to east-west changes in the zonal walker circulations that are associated with 
ENSO[11]. In comparison, the precipitation rise is due to western Indian Ocean warming[8].  

Ethiopia is one of the states that is affected by climate extremes because of its wide spatial and temporal 
variation in precipitation and temperature[12–14]. Changes in the severity of climate extremes have serious 
consequences for local communities, economies, and the environment[15,16]. To develop a mitigation and 
adaptation plan, it is critical to study temporal changes in climate extremes, especially extreme rainfall indices, 
including their quantity, occurrence, and interval. On the contrary, more days with precipitation and fewer 
consecutive wet days were detected in different places in Ethiopia[14,16]. Due to great spatiotemporal variability, 
there are no stable inclinations in the extreme rainfall indices[14,16,17]. 

Facts derived from empirical research[18] and model studies[6,19] show that extreme climate phenomena, 
such as floods and prolonged droughts, have been shifting in terms of frequency, magnitude, timing, and spatial 
extent. The quantity of wet and dry days, the length of wet and dry times, the amount of rainfall, and the 
warmest days and nights all change over time[20,21]. The variation in extreme climate phenomena is different 
across spatiotemporal scales, and so are the consequences[22]. In the meantime, the need for information on 
local-scale climate extreme events has become important in recent times because of the increasing effects of 
the hazard on agricultural activities. There has been some research on global climate-related extreme 
occurrences, and their analysis has revealed spatiotemporal variances. Wu et al.[23] discovered that from 1969–
2011, there was an overall drop in the quantity of consecutive dry days and a rise in the annual simple daily 
intensity index, maximum one-day precipitation, and maximum five-day precipitation. 

Former studies[24–26] conducted a study that focused on an annual scale and revealed the existence of 
complex trends in extreme rainfalls. This is especially true in mountainous states similar to Ethiopia, where 
there are notable climatic differences within small horizontal distances, primarily due to complicated 
topographic places[27]. Gaining understanding at watershed level has proven difficult because previous climate 
extreme analyses were primarily conducted at classical (annual, seasonal, and monthly) time scales, which do 
not align with localised crop calendars for different ACZs. Additionally, the indicated extent of examination 
would not be proper for creating an adaptation preparation for particular field operations in given ACZs. 

In Ethiopia, climatic variables have a greater impact on the timing and distribution of rainfall than the 
overall amount[28]. In addition, since the 1970s, risky meteorological conditions have become more prevalent 
throughout Ethiopia, which has negative consequences for the nation’s socio-economic development, its 
economy governed by agriculture, and the country’s main sector, which is heavily reliant on rainfall, both 
seasonal and annual. The Northwest of Ethiopia is similar in that it experiences unpredictable and erratic 
rainfall patterns, severe land degradation, extreme poverty, and frequent crop failure[29]. The Abiya watershed 
consists of various ACZs and is found in the top part of the Northwest Highlands of Ethiopia. Local farmers 
faced a variety of issues with their farming operations due to factors related to rainfall variability. 
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According to Wu et al.[23], a certain time is ordinarily used to recognise the pattern of a succession of rain 
drops and their effects, and the choice of time has a significant impact on the results. Furthermore, it has been 
established that different crops are affected differently by the same extreme rainfall event, depending on when 
it occurred and how extreme it was[19]. This means that key field operations or crop calendars for a specific 
time may be properly governed by extreme climatic conditions. However, there hasn’t been a sufficient 
published study on extreme rainfall indices and their consequences on crop calendars by considering various 
ACZs in Ethiopia. The Abiya watershed is believed to be a site that can represent the larger context of 
Northwest Ethiopia and other highlands of the country as well, given its geographic location and composition 
of ACZs.  

Therefore, conducting research at the local level on extreme rainfall indices and how they affect crop 
calendars at the watershed scale is crucial to giving development agents relevant data on how to implement 
mitigation and adjustment plans for climate change, improve water resource management, and promote 
agricultural development. So, analysing extreme rainfall indices and their consequences on the local farming 
crop calendar in the case of the ACZs of the Abiya Watershed, Northwest Highlands of Ethiopia, is the primary 
point of the present study. 

2. Study area 
The investigation is carried out in the Abiya watershed, which is found in northwest Ethiopia within 

10°43ʹ0ʺ N to 11°15ʹ0ʺ N latitude and 37°25ʹ0ʺ E to 37°55ʹ0ʺ E longitude, upper Blue Nile basin, Ethiopia 
(Figure 1). The watershed covers an area of 1819 km2. Its elevation ranges from 1500 m–4084 m. Following 
the Ministry of Agriculture[30], this study adopted the traditional ACZs grouping approach. By using the digital 
elevation model, the ACZs of the watershed consist of midland, highland, and cold-highland zones. The 
temperature of the watershed has a mean minimum of 10.7 ℃ and a mean maximum of 23.7 ℃ annually. The 
mean annual rainfall was 1324 mm. 

 
Figure 1. Location map of the agro-climatic zones (in metres) of the study area. 

Geographically, the watershed is characterised by its highly undulating topography, which consists of 
mountains, deep gorges, escarpments, and plateaus. Most of the residents in the watershed were involved in 
mixed agriculture, which includes both crop cultivation and livestock rearing. In the Amhara region, where 
they consider the location to be arranged, the average family size is anticipated to be 4.6 individuals, whereas 
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the population density is expected to be 189.4 people km−2[31]. Based on this, it is better to project the total 
population inhabiting the watershed, and the aggregate population of the area is 344,572. 

3. Data and methods 
This section reviews the data source used for this study and the selection and calculation of the indices. 

It also presents a trend examination of selected extreme rainfall indices by using Mann-Kendall’s (MK) and 
Sen’s slope statistics to estimate the trends and magnitude changes of the extreme rainfall indices, respectively. 

3.1. Data  

3.1.1. Digital elevation model 

A digital elevation model with (30 m × 30 m resolution) was used for this study. It was accessed from the 
United States Geological Survey (USGS) https://earthexplorer.usgs.gov/ for generating ACZs and calculating 
their area coverage (Table 1).  

Table 1. Areal coverage of the ACZs of the Abiya watershed. 

ACZs Midland  Highland  Cold-highland Watershed 

Elevation (metres)  1500–2300 2300–3200 3200–4084 1379–4084 

Area (ha) 77,057 95,527 9344 181,928 

% 42.4 52.5 5.1 100 

3.1.2. CHIRPS satellite data 

The rainfall station databases of Ethiopia have many missing values[28], do not have adequate data records 
to support trend analysis[32], and do not make available well-timed and sufficient rainfall pattern data due to 
the scattering of observations, uneven allocation, and data gaps in the not-handled dataset[33]. Accordingly, it 
became mandatory to employ an alternative rainfall data source. Nowadays, there are several satellite-based 
precipitation datasets with varying spatiotemporal resolutions that are viable alternatives to rain gauge data. 
CHIRPS is a comparatively new rainfall dataset with good spatial (0.05°) and temporal (daily) resolution, and 
it is derived from multiple data sources covering 50° S and 50° N from 1981 to the present. 

At several locations throughout the world, CHIRPS has undergone validation, and the study’s findings 
have been good. For instance, Dinku et al.[34] assessed the execution of the CHIRPS dataset in comparison to 
1200 area rain gauge measurements from Ethiopia, Kenya, and Tanzania, and they found that CHIRPS worked 
better than other high-resolution satellite products of the rainfall dataset in several parts of East Africa. 
Similarly, CHIRPS was used because of its high accuracy and best performance in Ethiopia[35]. CHIRPS has 
been tested, and it works very well in different places in the country, such as Taye et al.[36] in the upper Blue 
Nile basin, Ethiopia, and Alemu and Bawoke[37] in the Amhara region, Ethiopia, respectively. In this study, 
the CHIRPS rainfall data was used without checking. The study area was also found under the previous 
validation conducted. The Abiya watershed is a micro-watershed found in the Amhara region, Upper Blue Nile 
basin, Ethiopia. 

This study obtained 39 years (1981–2019) of record precipitation data from the CHIRPS dataset for 50 
sample grid points (each representing an area of 5 km × 5 km), which was accessible online at 
http://climexp.knmi.nl/select.cgi?field=chirps_20_25. The entire grid points (Figure 2) cover the period from 
1981–2019, and there were strata for three ACZs. The classification is intended to purposefully represent the 
rainfall conditions of each ACZ in the research area (ACZs: 21, 26, and 3 grid points correspond to the midland, 
highland, and cold-highland, respectively). 
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Figure 2. Sample grids were taken into consideration for gathering rainfall datasets in Abiya Watershed. 

3.1.3. Local farmers  

In the context of the Northwest Highlands of Ethiopia, focus group discussion (FGD) is the best way of 
generating primary information or data about the locality. The national database of Ethiopia is very fragmented 
and doesn’t aggregate information at the micro-watershed or ACZ level. Accordingly, the qualitative dataset 
of the current study was collected using FGDs. In the three ACZs of the watershed, FGDs were conducted to 
determine the dominant summer cereal crops, their crop calendar, and any potential consequences of extreme 
rainfall on the crop calendar. One FGD was made in each ACZ, and each FGD consists of eight participants. 
The participants were chosen by considering their ACZs to capture their crop calendar timing and the possible 
consequences of extreme rainfall indices. To gather data regarding the existing climate variability, elders (>50 
years old) were purposely included in the FGDs. 

3.2. Methods  

3.2.1. Extreme rainfall indices analysis 

Eight daily extreme rainfall indices were well-defined and used, which were advanced by the Joint 
Commission for Climatology (CCI), the Climate Variability and Predictability (CLIVAR), and the Joint 
Commission for Oceanography and Marine Meteorology (JCOMM) Expert Team on Climate Change 
Detection and Indices (ETCCDI). A choice was established in consideration of imaginable impacts on cereal 
crop agriculture production over the watershed and significant references given by WMO[38]. Additionally, 
indices based on absolute thresholds give better information for impact studies than indices with percentile 
thresholds, which are more appropriate for spatial assessment. 

The three crop calendar periods (LPT, SaMT, and HaTT) that had been identified using focus group 
discussion and examined in this study for trends in the extreme rainfall indices, the chosen daily indices for 
the years 1981–2019. As shown in Table 2, each index was calculated using INSTAT+ software (version 3.36), 
which was created to simplify and analyse climatic data developed in the previous study[39]. The selected 
indices were calculated in keeping with the ETCCDI instructions. 
http://etccdi.pacificclimate.org/list_27_indices.shtml. 
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Table 2. Definitions of selected extreme rainfall indices. 

Indices Name Definitions Unit 

R × 1 day Maximum one-day 
precipitation 

Maximum one-day precipitation in a crop calendar mm 

R × 5 day Maximum five-day 
precipitation 

Maximum consecutive five-day precipitation in a crop calendar mm 

SDII Simple daily intensity index Mean precipitation amount on a wet day in a crop calendar, where a 
wet day is a day with precipitation ≥ 1 mm 

mm/day 

R10 mm Heavy precipitation days Count of days with precipitation amount ≥ 10 mm in a crop calendar days 

R20 mm Very heavy precipitation days Maximum count of days with precipitation amount ≥ 20 mm in a 
crop calendar 

days 

CDD Consecutive dry days Maximum count of consecutive days with precipitation amount < 1 
mm in a crop calendar 

days 

CWD Consecutive wet days Maximum count of consecutive days with precipitation amount ≥ 1 
mm in a crop calendar 

days 

PRCPTOT Total precipitation on wet days Total precipitation amount on wet days in a crop calendar mm 

3.2.2. Serial autocorrelation test 

For trend detection in time series, it is necessary to have data that is random and persistence-free[40] in 
order to eliminate the confounding influence of serial dependence on the interpretation of the findings. To 
avoid the manipulation of serial autocorrelation on the Mann-Kendal (MK) trend test, serial autocorrelation 
would have been looked at prior to using the MK trend test. Accordingly, in this work, the autocorrelation 
function as stated in the study of Von Storch[41] was utilised to test the randomness and independence of the 
longitudinal rainfall data for each ACZ as follows: 

𝑟 =
1

𝑛 − 1
(𝑋 − 𝑋)(𝑋 − 𝑋) /

1

𝑛
(𝑋 − 𝑋)  (1)

where 𝑟  is the lag−k autocorrelation coefficient, 𝑋 is the mean value of a time  𝑋 , 𝑛  is the number of 

observations, and 𝑘 is the time lag. Random series have autocorrelations close to zero for all time-lag divisions, 
except the zero-lag coefficient, which is always one. In that case, statistical tests are applied directly to the 
series. Statistical tests are employed in this scenario on a pre-whitened series to apply to non-random series 
that have one or more significantly non-zero autocorrelation values to account for the non-randomness[42]. 

3.2.3. Mann-Kendall test (MK) 

MK is a non-parametric statistical test used to discover if a series of data is going up or down. The MK 
test was used to detect the statistical significance of the tendencies throughout the observation[43]. The statistical 
significance of the trends seen during the observation was assessed using the MK test[44]. Earlier research by 
Feng et al.[43] and Poudel and Shaw[44] demonstrated that the test’s length and the allocation of the data do not 
follow a predetermined pattern. It is not affected by whether some data were absent or if the intervals between 
measurements were unequal. 

It is recognised by Feng et al.[43] that the MK statistics 𝑆, the variance statistic Var (σ), and the consistent 

standard normal test statistic 𝑍 could be considered as follows: 

𝑆 = 𝑠𝑔𝑛(𝑥 − 𝑥 ) (2)



Advances in Modern Agriculture | doi: 10.54517/ama.v4i2.2312 

7 

where n is the length of the dataset, 𝑥  and 𝑥  are two elements of the measured time series at the time step 𝑖 

and 𝑗, respectively, and 

𝑠𝑔𝑛 𝑥 − 𝑥 =

−1,  (𝑥 − 𝑥 ) < 0 

   0,  (𝑥 − 𝑥 ) = 0 

   1,  (𝑥 − 𝑥 ) > 0

 (3)

If the dataset is identically and independently distributed, then the mean of S is zero, and the variance of 
S is given by 

𝑉ar(S) =
1

18
 𝑛(𝑛 − 1)(2𝑛 + 5) − ti (ti − 1)(2ti + 5) (4)

where 𝑛 is the length of the dataset, 𝑚 is the number of tied groups (a tied group is a set of sample data having 

the same value) in the time series, and 𝑡𝑖 is the number of data points in the 𝑖  group.  

The formula is used to calculate 𝑍 statistics. 

𝑍 =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑆 + 1

Var(S) 
   𝑓𝑜𝑟 𝑆 < 0 

   0      𝑓𝑜𝑟 𝑆 = 0  
𝑆 − 1

Var(S) 
 𝑓𝑜𝑟 𝑆 > 0 

 (5)

Trends that are increasing or falling are indicated by positive or negative values 𝑍 , accordingly. A 
statistical significance level is employed to check the monotonic trend. The trend is statistically significant at 

the 99% confidence level if (𝑍) > 2.58, at the 95% confidence level if (𝑍) > 1.96, and at the 90% confidence 

level if (𝑍) > 1.65[45]. 

3.2.4. Sen’s slope estimator 

Sen’s slope estimator is a non-parametric procedure used to measure how much of a pattern there is in a 
set of data that changes over time. It is a more robust estimator than others because of its relative insensitivity 
to extreme values[46]. Sen’s slope estimator is also used to figure out the trend magnitude in hydro-
meteorological time series[47]. This method helps to lessen the impact of missed data or strange values as 
compared with linear regression[37,48,49]. 

For a given time series 𝑋  = 𝑥 , 𝑥 ,  𝑥 , … , 𝑥 , having 𝑁 pairs of data, the slope is computed as  

𝛽 =
𝑥 − 𝑥

𝑗 − 𝑖
, 𝑖 = 1, 2, 3, … 𝑁, 𝑗 > 𝑖, (6)

Sen’s Slope β represents the average of the slope values 𝛽  and is calculated as 

𝛽 =

⎩
⎨

⎧
𝛽 ,                    𝑖𝑓  𝑁 𝑖𝑠 𝑜𝑑𝑑

𝛽 + 𝛽

2
,     𝑖𝑓 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

 (7)

The sign of β reflects the figure’s inclination signal, whereas its value shows the steepness of the trend[37]. 
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4. Results and discussion  
In this study, three ACZs of the Abiya watershed were used to analyse the trend of the daily extreme 

rainfall indices and their consequences on the Meher (summer) cereal crop calendar from 1981–2019. The 
main crops in each ACZ in the watershed, as well as the unique crop calendar, are initially identified. Then the 
trends of all extreme rainfall indices in each ACZ were examined for a variety of crops, and the implications 
of the observed trend and the local farmers’ perceptions were investigated. 

4.1. Consequences of the extreme rainfall indices on the crop calendar 

 Classifying crop calendar time 

The main local crop calendars for cereal crop production systems were found to be LPT, SaMT, and 
HaTT based on the data and information collected from local farmers through FGDs. It was discovered that 
the primary cereal crops growing during the Meher (summer) season were barley (Hordeum vulgare) from the 
cold-highland region, maize (Zea mays) and wheat (Triticum spp.) from the highland region, and maize (Zea 
mays) and teff (Eragrostis tef) from the midland region. For a country similar to Ethiopia, where rain-fed 
activity is common, a study like this has significant benefits because Meher season crops are those that are 
harvested between September and February. Next, taking into account the annual optimum rainfall amounts, 
they precisely determined a typical period for each field operation using specific commonalities that typically 
occur during transitions. 

The precipitation distribution in a particular year is “normal” for farmers inside the watershed. Within the 
event of rainfall variability, rainfall beginning, interval, offset times, quantity, and distribution together create 
a favourable zone for them to effectively practice all the needed crop production. The key field activities were 
categorised into LPT, SaMT, and HaTT, principally based on their proximity to rainfall supplies. 
Arrangements of weeks (first, second, third, or fourth week) of a stated month are used as the first and end 
dates for each farming time, as presented in Table 3. The identical crop calendar identification methodology 
was applied in previous studies by Endale et al.[50]. 

Table 3. Crop calendar for the main Meher cereal crops in the ACZs of the study area. 

ACZs Midland Highland  Cold-highland 

Crop name  Maize  Teff Maize Wheat Barley  

LPT 1st week March–3rd 
week May 

1st week March–
4th week June 

4th week 
February–1st week 
May  

4th week February–2nd 
week June 

1st week 
February–2nd 
week May  

SaMT 4th week May–2nd 
week October 

1st week July–3rd 
week October 

2nd week May–1st 
week November 

3rd week June–3rd week 
October 

3rd week May–1st 
week October 

HaTT 3rd week October–2nd 
week November 

4th week 
October–3rd 
week November 

2nd week 
November–4th 
week November  

4th week October–2nd 
week November 

2nd week 
October–1st week 
November 

Since a week contains 7 days, local farmers were not able to accurately remember the beginning and end 
dates for all crops because they didn’t memorise them, and it caused more or less a misconception. Local 
farmers believe it is fair to describe the first and end dates for each crop calendar in terms of weeks, which is 
crucial for this study’s examination of the extreme rainfall indices. To respond to actual periods and have 
reliability in an analysis, the start and end dates of a defined week were used as the first and last days for that 
specific crop calendar, respectively. On the contrary, it doesn’t entail any local farmer doing major farm field 
operations either initially or later than the clearly specified crop calendar time. As opposed to the LPT, SaMT, 
and HaTT, there were a few seasons that didn’t fit into the three crop calendars (Table 3). 
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 Rainfall autocorrelation 

All autocorrelations fell within 5% significance levels, and there was no apparent pattern (e.g., positive 
autocorrelations followed by negative autocorrelations). This means the yearly rainfall time series for all ACZs 
did not show any significant serial correlation at all lags. The rainfall data were not correlated with each other 
(Figure 3). 

 
Figure 3. The correlation value of the annual rainfall at different lags in three ACZs. 

This time series was random, meeting the independence distribution criteria. The results revealed that the 
observed rainfall series data in the Amhara region of Ethiopia did not exhibit continuous persistence, as 
demonstrated by other research[29,37]. However, this non-association was the essence of randomness. In short, 
adjacent observations did not “correlate” (the areal average annual rainfall data indicated that no dependency 
or periodicity existed in this time series and suggested that areal average annual rainfall quantities are entirely 
independent of one year to the next). The autocorrelation function (ACF) for yearly rainfall in all ACZs 
showed, on the whole, no significant ongoing correlation by whole lags at the 5% significance level. Therefore, 
the analysis of the trends in the characteristics of the rainfall did not need any further data manipulation; the 
MK test was carried out directly. Outcomes from the serial correlation test, the MK test, and Sen’s slope 
predictor should be applied to the rainfall data from 1981–2019 for the Abiya watershed in all ACZs. 

4.1.1. Trends in extreme rainfall indices at land preparation time 

The trends of extreme rainfall indices for all crops in all ACZs during the LPT are given in Table 4. The 
outcomes of the MK trend tests indicated that in the study area, the highest of the indices displayed an 
increasing signal for 75% of the indices (R × 1 day, R × 5 day, SDII, R10 mm, CWD, and PRCPTOT) and 
descending indications for the remaining 25% of the indices (R20 mm and CDD) in the area during the LPT 
of teff. All observed extreme rainfall trends in LPT R10 mm were only significant at a 5% significance level. 
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Table 4. The trends of extreme rainfall indices for preferred cereals during LPT in each ACZ. 

ACZs  Midland 

Crop name   Teff   Maize  

Name of indices  Mean  MK Trend  Mean  MK Trend  

R × 1 day (mm) 28.05 0.65 0.05 20.72 0.45 0.03 

R × 5 day (mm) 58.45 0.63 0.09 42.49 0.44 0.11 

SDII (mm/day) 7.19 1.32 0.02 6.60 1.36 0.02 

R10 mm (day) 9.61 2.01** 0.09 4.38 1.29 0.03 

R20 mm (day) 2.05 –0.29 0.00 0.79 –0.41 0.00 

CDD (day) 82.38 –0.61 –0.06 60.82 0.51 0.34 

CWD (day) 38.71 0.62 0.06 20.20 –0.45 –0.03 

PRCPTOT (mm) 279.38 1.26 1.39 133.75 0.54 0.34 

ACZs Highland  

Crop name   Wheat   Maize  

Name of indices  Mean  MK Trend  Mean  MK Trend  

R × 1 day (mm) 26.04 0.12 0.01 21.48 0.34 0.04 

R × 5 day (mm) 55.45 0.45 0.10 44 0.29 0.05 

SDII (mm/day) 7.09 1.31 0.02 7.09 0.58 0.14 

R10 mm (day) 8.02 1.78* 0.10 4.02 0.42 0.00 

R20 mm (day) 1.62 0.09 0.00 0.76 0.23 0.00 

CDD (day) 72.23 –1.19 –0.17 57.18 –0.27 0.00 

CWD (day) 34.12 1.13 0.15 17.07 0.21 0.00 

PRCPTOT (mm) 245.23 1.52 2.03 119.69 0.17 0.10 

ACZs  Cold highland  

Crop name   Barley      

Name of indices  Mean  MK Trend     

R × 1 day (mm) 26.54 –0.59 –0.07    

R × 5 day (mm) 54.52 0.54 0.17    

SDII (mm/day) 6.72 0.92 0.02    

R10 mm (day) 6.3 0.79 0.00    

R20 mm (day) 1.2 –0.10 0.00    

CDD (day) 77.59 –0.91 –0.10    

CWD (day) 27.59 0.19 0.00    

PRCPTOT (mm) 184.67 0.74 0.60    

Note: * is statistical significance at 0.1, ** is statistical significance at 0.05. 

The majority, 75% of the indices, revealed rising trends with R × 1 day, R × 5 day, SDII, R10 mm, and 
PRCPTOT. The remaining 25% of the indices indicated a decreasing trend, with R20 mm and CWD observed 
during the LPT of maize. From all observed increasing and declining trends, the indices were non-significant 
in statistical terms during the LPT of maize at any level. CWD was decreasing, and a divergent trend in CDD 
was observed. Insufficient spring rainfall affects crop productivity in the main rainy season that follows by 
influencing soil moisture levels and long-cycle crop varieties like maize[51]. Furthermore, the availability and 
lack of rainfall greater or lower than 1mm were used to measure CWD and CDD, respectively. The LPT of 
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maize revealed a declining trend in CWD and a rising trend in CDD. As presented by Worku et al.[16], a 
decreasing inclination in CWD and a rising trend in CDD point to a worsening of the drought in the area. 

For wheat during LPT, the temporal means and signs in the indices were computed at the highland zone 
depicted in Table 4. The MK trend tests in the watershed revealed a rising signal for 87.5% of the indices with 

R × 1 day, R × 5 day, SDII, R10 mm, R20 mm, CWD, and PRCPTOT and declining signals for the remaining 
12.5% of the indices with CDD in the area during the LPT. Even though all of the observed trends in LPT 
rainfall were extreme, only R10 mm was significant at a 10% level of significance. As the results of Table 4 

show, the majority (87.5%) in the signals of the indices increased with R × 1 day, R × 5 day, SDII, R10 mm, 
R20 mm, and PRCPTOT, while decreasing for the remaining 12.5% of the CDD observed during the LPT of 
maize. All the observed increasing and declining inclinations of the indices were non-significant in statistical 
terms during the LPT of maize. Half of the extreme change was 0.00 days per decade. 

The trend analyses for the LPT periods of barley during the study period in the cold-highland area did not 
reveal any consistent patterns, although the MK trend tests revealed going up signals for 62.5% of the indices 
R × 5 day, SDII, R10 mm, CWD, and PRCPTOT. The downward signals for 37.5% of the indices were R × 1 
day, R20 mm, and CDD. Using CWD and CDD, the availability and lack of rainfall greater or lower than 1 
mm were determined, respectively. As shown below, CWD was increasing and CDD was decreasing. This 
suggests that there is rainfall during the LPT of barley. Besides, in this study, the CWD exhibited going-up 
trends in all ACZs during LPT. Nevertheless, Endale et al.[50] investigated in the Merti district and found a 
falling trend in CWD. SDII is positive, and it is suggested that the daily rainfall has been increasing. The 
PRCPTOT indicates a positive trend in each ACZ during the LPT. Contrary to this, a study revealed declining 
tendencies in PRCPTOT among varying agro-ecological zones in the tropical highlands at Choke Mountain, 
which is the extending part of the watershed[52]. 

The trends of the indices for LPT also vary among the three ACZs. For example, R20 mm decreased in 
the midland and cold-highland zones while rising in the highland region. It is understood that the scales and 
observed effects of indices tend to differ across the three ACZs. Similarly to what was found in a former study, 
which was conducted in Ethiopia’s moist region, a complex trend in the daily rainfall indices was seen[53]. This 
study was similar to a prior study by Endale et al.[50]. The indices were inconsistent and lacked statistical 
significance. For instance, information acquired from FGDs in all ACZs observed a declining rainfall during 
LPT, which critically limits the duration per season and the amount of time that could be spent cultivating per 
day due to high temperatures. 

4.1.2. Trends in extreme rainfall indices at sowing and management time 

Table 5 presents the trends in the indices computed for each crop in each ACZ during the SaMT. The 
table showed that seven out of the eight indices (R × 1 day, R × 5 day, SDII, R20 mm, CDD, CWD, and 
PRCPTOT) showed increasing trends for the SaMT of teff in the midland, while the remaining R10 mm 
revealed declining trends. In terms of statistics, there was no significance in any of the rising or falling 
indications. Some indices had no discernible variation in their rates of change (0.00 days per decade). 
Conversely, the CDD increased by 0.01 days/decades with a mean value of 35.64 days during the SaMT of 
teff. This suggests that during the past thirty years, CDD at the critical crop stage has increased. According to 
Berhane et al.[26], a rise in CDD might influence crop development and productivity, particularly during the 
main rainy season. Additionally, previous studies by Ademe et al.[54] observed that irregularities in the crucial 
rainy season influenced teff planting. 

According to prior studies[55], an increase in CDD frequency will have a significant negative impact on 
the time of the crop growth phase, which will impact crop growth and output. The MKs trend examinations 
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displayed an increasing indication for 62.5% of the indices SDII, R20 mm, and CWD; and PRCPTOT 
decreasing signals for 25% of the indices R × 5 day and CDD; and no visible signal for 12.5% of the indices 
R × 1 day for SaMT of maize. However, the trend investigation revealed that there was no statistical 
significance. 

The extreme rainfall indices for wheat and maize (SaMT) in highland zones are also included in Table 5, 
along with their means value and trends. In the watershed, the MK trend tests revealed downward signals for 
75% of the indices R × 1 day, R × 5 day, SDII, R20 mm, CDD, and PRCPTOT, and increasing signals for 25% 
of the indices R10 mm and CWD. The indices for the period of SaMT of wheat weren’t statistically significant 
among all reported rising and decreasing trends in the area. In the same tables, the MK result for the SaMT of 
maize is also shown. Based on the observed trend test, 37.5% of them displayed increasing signals for the 
indices R10 mm, CWD, and PRCPTOT, and decreasing indications for the remaining 62.5%, which included 
R × 1 day, R × 5 day, SDII, R20 mm, and CDD during SaMT of maize. According to the observed trends in 
the SaMT extreme rainfall indices, only CWD was statistically significant at a 10% level of significance. The 
SDII has a negative trend during SaMT for both wheat and maize, similar to other indices. This means that the 
daily rainfall has declined. 

Table 5. The trends of the extreme rainfall indices for preferred cereals during SaMT in each ACZ. 

ACZ Midland  
Crop name   Teff   Maize  
Name of indices  Mean  MK Trend  Mean  MK Trend  
R × 1 day (mm) 37.11 0.21 0.03 38.72 0.00 0.00 
R × 5 day (mm) 93.81 0.02 0.00 94 –0.06 –0.01 
SDII (mm/day) 10.90 0.21 0.00 10.33 0.16 0.01 
R10 mm (day) 35.56 –0.36 0.00 39.89 0.66 0.04 
R20 mm (day) 10.25 0.91 0.00 11.18 0.85 0.04 
CDD (day) 35.64 0.01 0.01 52.35 –0.49 –0.04 
CWD (day) 77.56 0.04 0.00 93.89 0.67 0.06 
PRCPTOT (mm) 845.06 0.02 0.04 968.6 0.83 1.01 
ACZ Highland  
Crop name   Wheat     Maize  
Name of indices  Mean  MK Trend  Mean  MK Trend  
R × 1 day (mm) 40.27 –0.46 –0.67 40.66 –0.24 –0.03 
R × 5 day (mm) 100.79 –0.07 –0.03 100.79 –0.07 –0.03 
SDII (mm/day) 11.03 –0.60 –0.01 10.31 –0.77 –0.10 
R10 mm (day) 40.51 0.61 0.04 45.43 1.22 0.09 
R20 mm (day) 12.53 –0.52 0.00 13.56 –0.55 0.00 
CDD (day) 38.05 –0.69 –0.07 66.02 –1.42 –0.29 
CWD (day) 90.17 0.76 0.07 111.38 1.84* 0.29 
PRCPTOT (mm) 994.63 –0.17 –0.21 1146.15 0.68 1.12 
ACZ Cold highland  
Crop name    Barley      
Name of indices  Mean  MK Trend     
R × 1 day (mm) 42.56 0.41 0.05    
R × 5 day (mm) 105.45 –0.16 –0.04    
SDII (mm/day) 10.76 –0.36 –0.01    
R10 mm (day) 46.26 1.03 0.07    
R20 mm (day) 14.28 0.05 0.00    
CDD (day) 45.18 –1.34 –0.18    
CWD (day) 104.13 1.27 0.15    
PRCPTOT (mm) 1118.25 0.31 0.53    

Note: * is statistical significance at 0.1. 

The temporal means and signals of the extreme rainfall indices for SaMT in the cold-highland area are 
also shown in Table 5. As it was shown, during the SaMT of barley, the MK trend tests in the study revealed 
increasing signals for 62.5% of the indices R × 1 day, R10 mm, CWD, and PRCPTOT and descending signals 
for the remaining 37.5% of the indices SDII, R × 5 day, and CDD. The trend in the SDII is negative during the 
SaMT of barley, similar to other extreme rainfall indices. This may indicate that the daily rainfall has declined. 
The upward indication of R10 mm and R20 mm was seen during the SaMT of barley. According to Worku et 
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al.[16], going up in these indices indicates potential risks related to flooding and soil erosion in the area. From 
all recorded trends during SaMT, none of the indices has become significant. 

The majority of rainfall extremes, with the exception of CWD for the SaMT of maize in the highland 
zone, were not statistically significant. Endale et al.[50] pointed out that while not all trends in SaMT rainfall 
extremes were significant, an increasing and decreasing indication might have a significant impact on rain-fed 
crop production. The delayed onset and early termination of rainfall, according to the FGD participants, had 
an impact on farming during the summer. The impacts of heavy rainfall and prolonged CDD at serious crop 
stage has increased in all ACZs over the past three decades, according to farmers who have observed that “the 
rain falls late after sowing time passes, and due to early termination of rainfall, the farmlands get dry and crops 
do not develop very well.” On the other hand, because of its nature, teff needs buddy character during SaMT; 
yet, the prolonged CDD may cause undesirable damage to teff planting. Their views somewhat matched the 
observed pattern at three ACZS and were in line with the extensive CDD at the midland zone for SaMT of teff 
and heavy rainfall. 

SDII has shown a negative trend in the highlands and the cold highlands. Mohammed et al.[56] pointed out 
that agricultural production is at risk due to the decreasing trends of SDII. For instance, the consequence of 
CDD with an equal length may be severe if it happens at the initial growing time of crops rather than at a later 
phase[19]. A prior study by Chabala et al.[57] found that though a CDD of 4 in 30 days after planting would be 
perceived as less significant, since its impact is aggregate, it could still be harmful to crop growth. Usually, 
the existence of prolonged dry times during critical growing and development stages might have a negative 
effect on crop productivity[19]. During the SaMT of wheat, PRCPTOT appeared to rise in each ACZ except for 
the highland ACZ, with the maximum amount exhibited in all ACZ compared to other extreme rainfall. 
Contrary to this, a study employed in the tropical highlands at Choke Mountain, which is the extending part of 
the watershed, showed a decreasing trend in PRCPTOT over cool, sub-humid agro-ecological zones[52]. 

According to a study by Megersa et al.[58], rainfall inconsistency has direct or indirect consequences on 
agricultural production because it hinders crop growth and improvement by aggravating the proportion and 
distribution of hostile climate settings, reducing water supplies, and exacerbating the severity of soil erosion. 
The biggest issue facing Ethiopia’s agricultural sector has always been rainfall inconsistency. Local farmers 
schedule their planting time based on the onset time of the rainfall season; nonetheless, crop loss because of a 
false start to the rainy season may be a frequent problem[59]. 

According to the FGDs member, a key problem found in the watershed was the inconsistency and 
variation in the onset and offset times rather than the amount of rainfall. The rain started late in the last weeks 
of June, and it stopped earlier in September. The FGDs participant also mentioned that the rainfall for the 
Meher season has been declining (expected to onset in June) and in September (the flowering stage of the 
Meher crops). Contrary, rainfall in September is vital since crops at that time are in the flowering or ripening 
stage and need more water for maturation. 

4.1.3. Trends in extreme rainfall indices at harvesting and threshing time 

The temporal means, trends, and the magnitude of change in the indices estimated for each crop in each 
ACZ during the HaTT are shown in Table 6. The trend analyses did not show a regular pattern among the 
recording data during the study period at the midland zone for the HaTT periods of both teff and maize. The 
MK trend tests revealed positive signals for 87.5% of the indices R × 1 day, R × 5 day, SDII, R10 mm, R20 
mm, CWD, and PRCPTOT, and negative signals for 12.5% of the indices CCD for teff. Unlike other extreme 
rainfall indices, the trend in the CCD was negative during the HaTT of teff. This shows that the amount of 
daily rainfall has been increasing. The MK trend tests displayed rising signals for 75% of the indices R × 1 
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day, R × 5 day, R10 mm, R20 mm, CWD, and PRCPTOT, as well as downward signals for 25% of the indices 
SDII and CCD during HaTT of maize. Due to the increased extreme rainfall indices, several issues, such as 
erosion of soil, agricultural damage, and waterlogging, would have an impact on how people leave rural and 
urban sites[55]. 

During the HaTT of wheat, the trend signals were increasing for 62.5% of the indices R × 1 day, R × 5 
day, SDII, R10 mm, CWD, and PRCPTOT, while decreasing for 25% of the indices R20 mm and CDD. There 
was no visible signal for 12.5% of the SDII indices. At a 5% level of significance, the CWD has statistically 
increased. Long CWD during the harvesting period was particularly adversely affecting crop production. 
Additionally, the mass of the indices increased, resulting in convergent signals of CDD. This suggests there 
was precipitation during the highland area HaTT of wheat. In the same table, the findings show the trend 
signals were increasing for 62.5% of the indices R × 1 day, R × 5 day, SDII, CWD, and PRCPTOT, decreasing 
for 25% of the indices R20 mm and CDD, and for 12.5% of the indices R20 mm, there was no visible signal 
during the harvesting times of maize in the highland area. However, no positive or negative signals for any 
kind of crop type were found in statistically significant trend testing. During the maize HaTT, none of the 
indices that were seen in trend testing had statistical significance. 

Table 6. The trends of the extreme rainfall indices for preferred cereals during HaTT in each ACZ. 

ACZ Midland  
Crop name   Teff   Maize  
Name of indices  Mean  MK Trend  Mean  MK Trend  
R × 1 day (mm) 12.14 1.21 0.13 15.32 0.60 0.09 
R × 5 day (mm) 31 0.47 0.17 41.53 0.35 0.2 
SDII (mm/day) 5.54 0.57 0.02 7.4 –0.18 –0.09 
R10 mm (day) 1.34 1.23 0.00 1.97 0.76 0.00 
R20 mm (day) 0.18 0.39 0.00 0.51 0.20 0.00 
CDD (day) 24.44 –1.40 –0.06 17.56 –1.11 –0.07 
CWD (day) 6.59 1.46 0.07 6.48 1.28 0.07 
PRCPTOT (mm) 39.15 1.16 0.42 51.67 0.94 0.4 
ACZ Highland  
Crop name   Wheat   Maize  
Name of indices  Mean  MK Trend  Mean  MK Trend  
R × 1 day (mm) 10.96 1.08 0.11 8.73 0.52 0.03 
R × 5 day (mm) 30.68 0.44 0.94 20.5 0.87 0.14 
SDII (mm/day) 5 0.00 0.00 4.38 0.11 0.00 
R10 mm (day) 1.23 0.65 0.00 0.51 –1.17 0.00 
R20 mm (day) 0.15 –0.12 0.00 0.00 0.00 0.00 
CDD (day) 23.85 –1.55 –0.09 24.87 –1.30 –0.05 
CWD (day) 7.25 1.66* 0.1 5.28 1.32 0.06 
PRCPTOT (mm) 39.55 1.23 0.42 23.38 0.97 0.22 
ACZs Cold highland 
Crop name   Barley      
Name of indices  Mean  MK Trend     
R × 1 day (mm) 18.49 0.56 0.08    
R × 5 day (mm) 47.129 –0.48 –0.17    
SDII (mm/day) 7.55 0.31 0.01    
R10 mm (day) 2.41 0.21 0.00    
R20 mm (day) 0.67 0.05 0.00    
CDD (day) 15.87 –0.88 –0.05    
CWD (day) 98.79 1.02 0.07    
PRCPTOT (mm) 68.47 0.28 0.17    
Note:* is statistical significance at 0.1. 

For the HaTT of barley in the cold highlands, Table 6 also presented the mean, trends, and magnitude of 
change in the extreme rainfall indices. During the barley harvesting times in the area, the trend signals for 75% 
of the indices R × 1 day, SDII, R10 mm, R20 mm, CWD, and PRCPTOT were increasing and 25% of the 
indices R × 5 day and CDD were declining; however, there were no statistically significant trend tests for all 
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rising and descending signals for barley crop types. Most of the indices were increased, and on the other hand, 
the CDD decreased, which shows there was rainfall during the HaTT of barley. 

The investigation of the maximum indices in all ACZs revealed a rise in these indices. To detect the 
availability and lack of precipitation higher or lower than 1 mm, CWD and CDD were used. An ascending 
trend of CWD was significant in the highland zone. CDD was insignificantly decreasing in all ACZs. All ACZs, 
with the exception of the highlands (maize), observed a rising pattern of R10 mm and R20 mm during HaTT. 
Worku et al.[16] also pointed out that increasing indices indicated major floods and soil erosion problems in the 
area. During the HaTT, PRCPTOT presented a positive trend in all ACZs with a high magnitude in comparison 
to other extreme rainfall. Contrary to this, a study in the tropical highlands at Choke Mountain, which is the 
extending part of the watershed, reported a decreasing trend in PRCPTOT over cool, sub-humid agro-
ecological zones[52]. 

The HaTT rainfall indices found for different ACZs exhibit increased and decreased signals, which have 
various implications for the rain-fed agriculture production system. Except for the decreasing trend, all the 
observed and increasing trends in HaTT rainfall indices in the midland, highland, and cold-highland zones 
indicate the deteriorating process of climatic conditions for Meher crops at the maturity stage and harvesting 
and threshing operations in all ACZs. The analysis of the extreme rainfall indices displays an increased trend 
in most extreme rainfall indices in the entire watershed during HaTT. This trend in rainfall extremes 
substantiates that the rainfall trend has not been stable in the Abiya watershed. This suggests that extreme 
rainfall events may pose damage to socioeconomic activities and ecosystems. 

Participants in FGDs across ACZs justification, which was confirmed by their responses, that happenings 
of extreme conditions, such as extended CWD rainfalls during HaTT, may have negative consequences on 
crop production, physically harm crops by making them dry and dampen and cause grains to mature earlier 
and later; deplete growth labour supplies; and cause tension on local farmers. Their insight was supported by 
the recorded trends in the extreme rainfall indices of all ACZs. Average rain is also risky for harvesting time. 
Earlier studies[28,59–61] reported that rainfall occurring for the duration of the harvesting time could cause harm 
to crops and postpone harvesting. A study by Deressa and Hassan[62] predicted a decline in yields per hectare’s 
net income because of rising rainfall during the harvesting season in Ethiopia. Harvesting time may cause the 
shattering of crop grains, pre-harvest seed germination, and disturbances in harvesting activity. Due to the 
irregular rainfall distribution, up to 100% of crop losses were seen in certain areas of the West Arsi 
Administrative Zone, Oromia Region, Ethiopia, throughout several crop-growing years due to the uneven 
rainfall distribution[63].  

5. Conclusions 
In the three ACZs of the Abiya watershed, this study examined the consequences of extreme rainfall 

indices on the local farming crop calendar. The findings revealed that the bigger the number of extreme rainfall 
indices, the greater the trend in the most preferred crops in each ACZ. Yet, only a few of them were statistically 
significant. Most of the LPT, SaMT, and HaTT observed a rising trend in the highlands, midlands, and entire 
ACZs, respectively. Contrary to expectations, some of the decreasing trends in the extreme rainfall indices for 
LPT, SaMT, and HaTT were recorded in the cold-highland, highland, and all ACZs. Even with the fact that 
the excess of the extreme rainfall indices isn’t statistically significant. The observed rising and decreasing 
signals could have negative consequences for rain-fed crop production. For example, during the SaMT of teff, 
an increasing trend in consecutive dry days was seen in the midland. The rising trend in consecutive dry days 
is an indication of greater aridity and a great risk of periodic rainfall deficiencies. Due to the rising trend in 
very heavy precipitation days (R20 mm) and heavy precipitation days (R10 mm), the area may be facing 
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flooding, crop damage, and soil erosion. The severity of the extreme rainfall indices varies spatially and among 
cereal crops. According to the findings, it is required to develop suitable crop varieties and drought-tolerant 
crops, as well as establish an efficient early warning system, with the aim of lessening the negative 
consequences of these extreme rainfall indices on the agricultural sector. 
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