The impact of climate change on agriculture and economic growth in Cameroon

Fidoline Ngo Nonga, Cyrille Dominick Bitting

Article ID: 3636
Vol 6, Issue 2, 2025
DOI: https://doi.org/10.54517/ama3636
Received: 17 December 2024; Accepted: 13 February 2025; Available online: 28 May 2025; Issue release: 30 June 2025

VIEWS - 50 (Abstract)

Download PDF

Abstract

The agricultural sector is both one of the key sectors of the Cameroonian economy and the one most influenced by the climate. As indicated in the fifth report of the Intergovernmental Panel on Climate Change, the increase in the concentration of greenhouse gases in the atmosphere, the rise in temperature, changes in rainfall patterns, changes in cloud cover, etc., will continue to change. But how does climate change affect agricultural activities and influence economic growth in Cameroon? The aim of this article is to analyze the impact of climate change on agricultural production and on economic growth in Cameroon over the period 1990–2020. To achieve this objective, a stochastic production function model developed by Just and Pope was used. We also used CO2 emissions as a proxy for climate change. The results obtained clearly show that the increase in CO2 emissions has a negative impact on agricultural production and on economic growth.


Keywords

climate change; agriculture; economic growth; Cameroon


References

1.         Stern N. The Economics of Climate Change: The Stern Review. Cambridge University Press; 2007.

2.         FAO. Productivity and efficiency measurement in agriculture: a literature review and gap analysis. Rome: Food and Agriculture Organization of the United Nations. 2017; 77.

3.         WDI. World Development Indicators 2023. World Bank Group. 2023.

4.         Mendelshon R, Nordhaus W, Shaw D. The Impact of Global Warming on Agriculture: A Ricardian Analysis. American Economic Review. 1994; 4(84), 753–771.

5.         Nonga FN. Economics of adaptation. Understanding adaptation to climate change (French). Makakos, Veritas, coll Economica. 2020.

6.         Garg S, Rumjit NP, Roy S. Smart agriculture and nanotechnology: Technology, challenges, and new perspective. Advanced Agrochem. 2024; 3(2): 115–125. doi: 10.1016/j.aac.2023.11.001

7.         Kumar P, Sahu NC, Kumar S, et al. Impact of climate change on cereal production: Evidence from lower-middle-income countries. Environmental Science and Pollution Research. 2021; 28(37): 51597–51611. doi: 10.1007/s11356-021-14373-9

8.         Ozdemir D. The impact of climate change on agricultural productivity in Asian countries: A heterogeneous panel data approach. Environmental Science and Pollution Research. 2022; 29(6): 8205–8217. doi: 10.1007/s11356-021-16291-2

9.         Solomon R, Simane B, Zaitchik BF. The impact of climate change on agriculture production in Ethiopia: Application of a dynamic computable general equilibrium model. American Journal of Climate Change. 2021; 10(01): 32–50. doi: 10.4236/ajcc.2021.101003

10.      Carr TW, Mkuhlani S, Segnon AC, et al. Climate change impacts and adaptation strategies for crops in West Africa: A systematic review. Environmental Research Letters. 2022; 17(5): 053001. doi: 10.1088/1748-9326/ac61c8

11.      Correia CDN, Amraoui M, Santos JA. Analysis of the Impacts of Climate Change on Agriculture in Angola: Systematic Literature Review. Agronomy. 2024; 14(4): 783. doi: 10.3390/agronomy14040783

12.      Pequeno DNL, Hernández-Ochoa IM, Reynolds M, et al. Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environmental Research Letters. 2021; 16(5): 054070. doi: 10.1088/1748-9326/abd970

13.      Piontek F, Drouet L, Emmerling J, et al. Integrated perspective on translating biophysical to economic impacts of climate change. Nature Climate Change. 2021; 11(7): 563–572. doi: 10.1038/s41558-021-01065-y

14.      Bastien-Olvera BA, Granella F, Moore FC. Persistent effect of temperature on GDP identified from lower frequency temperature variability. Environmental Research Letters. 2022; 17(8): 084038. doi: 10.1088/1748-9326/ac82c2

15.      Newell RG, Prest BC, Sexton SE. The GDP-Temperature relationship: Implications for climate change damages. Journal of Environmental Economics and Management. 2021; 108: 102445. doi: 10.1016/j.jeem.2021.102445

16.      Ogbuabor JE, Egwuchukwu EI. The Impact of Climate Change on the Nigerian Economy. International Journal of Energy Economics and Policy. 2017; 7(2): 217–223.

17.      Just RE, Pope RD. Stochastic specification of production functions and economic implications. Journal of Econometrics. 1978; 7: 67–86.

18.      Just RE, Pope RD. Production function estimation and related risk considerations. American Journal of Agricultural Economics. 1979; 61(2): 276–284. doi: 10.2307/1239732

19.      IPCC. Climate change: the scientific basis of the intergovernmental Panel on Climate Change. 2001.

20.      IPCC. Climate change 2007: the physical science basis. Working Group 1, Fourth report of the intergovernmental Panel on Climate Change. 2007.

21.      IPCC. Climate change 2014: synthesis report. Working Group 1, Fifth report of the intergovernmental Panel on Climate Change. 2014.

22.      IPCC. Climate change 2021: the physical science basis. Working Group 1, Sixth Report of the Intergovernmental Panel on Climate Change. 2007.

23.      World Bank Group. Cameroon-Diagnostic of the energy sector (French). Available online: http://documents.worldbank.org/en/publication/documents-reports/documentdetail/099062524045536403/p17496019a0ea40461ba431c54e7aace978 (accessed on 12 October 2024).

24.      Ngana JO, Kechia AF. Urbanisation and CO2 emissions in Cameroon: An empirical analysis. International Journal of Energy Economics and Policy. 2018; 8(5): 197–205.

25.      MINEPDED. Initial report on climate change in Cameroon (French). Available online: http://unfccc.int/resource/docs/natc/cmrnc1f.pdf (accessed on 12 October 2024).

26.      Nkemdrim L, Choumba JLE, Ngwa GA. Deforestation and CO2 emissions in Cameroon: A quantitative analysis. Journal of Sustainable Development in Africa. 2019; 21(5): 1–18.

27.      PARM. Assessment of agricultural risks in Cameroon (French). Platform for Agricultural Risk Management. 2017; 138.

28.      Herfindahl OC, Kneese A. Economic theory of natural resources.1974.

29.      Marshall A. Principles of Economics. London: McMillan; 1898.

30.      Pigou AC. The economics of welfare. London: McMillan; 1932.

31.      Baumol WJ, Oates WE. In: The Theory of Environmental Policy, 2nd ed. Cambridge University Press; 1988

32.      Stern N. A Blueprint for a Safer Planet: How to Manage Climate Change and Create a New Era of Progress and Prosperity. Bodley Head; 2009.

33.      Blanc E, Reilly J. Approaches to assessing climate change impacts on agriculture: An overview of the debate. Review of Environmental Economics and Policy. 2017; 11(2): 247–257. doi: 10.1093/reep/rex011

34.      Tigchelaar M, Battisti DS, Naylor RL, et al. Future warming increases probability of globally synchronized maize production shocks. Proceedings of the National Academy of Sciences. 2018; 115(26): 6644–6649. doi: 10.1073/pnas.1718031115

35.      Ochou F, Quirion P. Impact of climate change on agriculture: A quantification of price bias in econometric approaches (French). Revue économique. 2022; 73(1): 43–67. doi: 10.3917/reco.731.0043

36.      Adams RM. Global climate change and agriculture: An economic perspective. American Journal of Agricultural Economics. 1989; 71(5): 1272–1279. doi: 10.2307/1243120

37.      Jones JW, Kiniry JR, Dyke P. CERES-Maize: A simulation model of maize growth and development. Texas A&M University; 1986.

38.      Boote KJ, Jones JW. Applications of, and limitations tocrop growth simulation models to fit crops and cropping systems to semi-arid environments. Drought Research Priorities for the Dryland Tropics. 1988; 63.

39.      OuédraogoM. Impact of climate change on agricultural income in Burkina Faso (French). Journal of Agriculture and Environnment for International Development. 2012; 106: 3–21.

40.      Mendelsohn R, Dinar A. Climate change and agriculture: an economic analysis of global impacts, adaptation and distribution effects. Climate change and agriculture. 2009.

41.      Maddison D. A hedonic analysis of agricultural land prices in England and Wales. European Review of Agriculture Economics. 2000; 27(4): 519–532. doi: 10.1093/erae/27.4.519

42.      Nguyen GTH, Shimadera H, Uranishi K, et al. Numerical assessment of PMP2.5 and O3 air quality in Continental Southeast Asia: Impacts of Potential future climate change. Athmospheric Environment. 2019; 215: 116901.

43.      Gbetibouo G, Hassan RM. Measuring the economic impact of climate change on major South African field crops: a Ricardian approach. Global and Planetary Change. 2005; 47(4): 143-152.

44.      Sanghi A, Mendelsohn R. The impacts of global warming on farmers in Brazil and India. Global Environmental Change. 2008; 18(4): 655-665.

45.      Garba HMB, Nafiou MMM. A Ricardian analysis of the impact of temperature and rainfall variability on agriculture in dosso and maradi regions of Niger republic. Agricultural Sciences. 2015; 6(7): 724-733.

46.      Molua E. Turning up the heat on African agriculture: The impact of climate change on Cameroon’s agriculture. African Journal of Agricultural Research. 2008; 2(1): 45–64.

47.      Bodjongo MJM. Climate Change, Cotton Prices and Production in Cameroon. The European Journal of Development Research. 2021; 34(1): 22–50. doi: 10.1057/s41287-020-00345-1

48.      Deschênes O, Greenstone M. The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather. American Economic Review. 2007; 97(1): 354–385. doi: 10.1257/aer.97.1.354

49.      Mendelsohn R, Kurukulasuriya P. Endogenous irrigation: The impact of climate change on farmers in Africa. The World Bank. 2007. doi: 10.1596/1813-9450-4278

50.      Cline T. Mutilingualism and dyslexia: Challenges for research and practice. An International Journal of Research and Practrice. 2000; 6.

51.      Weber M, Hauer G. A regional analysis of climate change impacts on Canadian agriculture. Canadian Public Policy/Analyse de Politiques. 2003; 29(2): 163. doi: 10.2307/3552453

52.      McLeman R, Smit B. Climate change, migration and security (French). Les cahiers de la sécurité. 2006; 63: 95–100.

53.      Smit B, McNabb D, Smithers J. Agricultural adaptation to climatic variation. Climatic Change. 1996; 33(1): 7–29. doi: 10.1007/bf00140511

54.      Parry MO, Canziani J, Palutikof P, et al. Climate Change 2007: Impacts, Adaptation and Vulnerability. Cambridge University Press; 2007.

55.      Patt A, Suarez P, Hess U. How do small-holder farmers understand insurance, and how much do they want it? Evidence from Africa. Global Environmental Change. 2010; 20(1): 153–161. doi: 10.1016/j.gloenvcha.2009.10.007

56.      Hornbeck R. The Enduring Impact of the American Dust Bowl: Short and Long-Run Adjustments to Environmental Catastrophe. National Bureau of Economic Research. 2009. doi: 10.3386/w15605

57.      Ranger N, Millner A, Dietz S, et al. Adaptation in the UK: A decision-making process. Policy Brief, Grantham Research Institute, London School of Economics. 2010.

58.      World Bank. In: World Development Report 2010: Development and Climate Change. Washington, DC; 2010.

59.      UNDP. Human Development Report 2007/08Fighting climate change: Human solidarity in a divided world. UNDP. 2007.

60.      Cuaresma JC. Natural Disasters And Human Capital Accumulation. Policy Research Working Paper. 2009. doi: 10.1596/1813-9450-4862

61.      Heipertz M, Nickel C. Climate Change Brings Stormy Days: Case studies on the impact of extreme weather events on public finances. SSRN Electronic Journal. 2008. doi: 10.2139/ssrn.1997256

62.      Nordhaus WD, Boyer J. In: Warming the World: Economic Models of Global Warming. MIT Press; 2000.

63.      Dell M, Jones B, Olken B. Climate Change and Economic Growth: Evidence from the Last Half Century. National Bureau of Economic Research. 2008. doi: 10.3386/w14132

64.      Dell M, Jones BF, Olken BA. Temperature and Income: Reconciling New Cross-Sectional and Panel Estimates. American Economic Review. 2009; 99(2): 198–204. doi: 10.1257/aer.99.2.198

65.      Abidoye BO, Herriges JA, Tobias JL. Controlling for Observed and Unobserved Site Characteristics in RUM Models of Recreation Demand. American Journal of Agricultural Economics. 2012; 94(5): 1070–1093. doi: 10.1093/ajae/aas056

66.      Lanzafame M. Temperature, rainfall and economic growth in Africa. Empirical Economics. 2014, 46, 1-18.

67.      Mendelsohn R. The Impact of Climate Change on Agriculture in Developing Countries. Journal of Natural Resources Policy Research. 2009; 1(1): 5–19. doi: 10.1080/19390450802495882

68.      Barrios S, Bertinelli L, Strobl E. Trends in rainfall and economic growth in Africa: A neglected cause of the African growth tragedy. Review of Economics and Statistics. 2010; 92(2): 350–366. doi: 10.1162/rest.2010.11212

69.      Ali SN. Climate Change and Economic Growth in a Rain-Fed Economy: How Much Does Rainfall Variability Cost Ethiopia? SSRN Electronic Journal. 2012. doi: 10.2139/ssrn.2018233

70.      Bernauer T, Kalbhenn A, Koubi V, et al. Climate change economic growth, and conflict. 2010.

71.      Guntukula R, Goyari P. Climate change effects on the crop yield and its variability in Telangana, India. Studies in Microeconomics. 2020; 8(1): 119–148. doi: 10.1177/2321022220923197

72.      Saei M, Mohammadi H, Ziaee S, et al. The impact of climate change on Grain Yield and Yield Variability in Iran. Iran Economics Review. 2019; 23(2): 509–531.

73.      Joshua A, Ajakaiye O, Gbadegesin A. The potential impact of climate change on Nigeria agriculture. Agrodep Working Paper. 2015.

74.      Boubacar I. The effects of drought on crop yields and yield variability: An economic assessment. International Journal of Economics and Finance. 2012; 4(12). doi: 10.5539/ijef.v4n12p51

75.      Saha A, Havenner A, Talpaz H. Stochastic production function estimation: small sample properties of ML versus FGLS. Applied Economics. 1997, 29(4), 459-469.

76.      Wooldrige JM. Introductory Econometrics, 3rd ed. South-Western College Pub; 2007.

77.      WDI. World Development Indicators 2024. World Bank Group. 2024.

78.      FAO. FAOSTAT/.2024. Available online: https://www.fao.org/faostat/en/#home (accessed on 12 October 2024).

79.      Defang JN, Manu I, Bime MJ, Tabi OF, Defang HF. Impact of climate change on crop production and development of Muyuka subdivision-Cameroon. International Journal of Agriculture, Forestry and Fisheries. 2014, 2(2), 40-45.

80.      Matsa M. Climate Change and Agriculture in Zimbabwe: Sustainability in minotoring farming communities. Springer International Publishing; 2021.

81.      Uprety DC, Reddy VR, Mura JD. Climate Change and Agriculture. Springer Singapore; 2019.

82.      Muhammad AN, Nguyen PC Thi NL. Environmental degradation and role of financialisation, economic development, industrialisation and trade liberalisation. Journal of Environmental management. 2021; 277: 111471.

83.      Schweikert A, Chinowsky P, Espinet X, Tarbert M. Climate change and infrastructure impacts: Comparing the impact on roads in ten countries through 2100. Procedia Engineering. 2014; 78: 306–316. doi: 10.1016/j.proeng.2014.07.072

84.      Qazi MA, Wee-Yeap L. Trade openness and economic growth: Empirical evidence from India. Journal of Business Economics and Management. 2015; 16(1): 188‑205.

85.      Fakoya MB. Natural resource, value added and economic growth: Empirical analysis from selected African countries. Journal of Human Ecology. 2014; 48(2): 227–233. doi: 10.1080/09709274.2014.11906792

86.      Warsame AA, Sheik-Ali IA, Ali AO, Sarkodie SA. Climate change and crop production nexus in Somalia: An empirical evidence from ARDL technique. Environmental Science and Pollution Research. 2021; 28(16): 19838–19850. doi: 10.1007/s11356-020-11739-3

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).