


Chito-oligosaccharides: A mini-review on sources, production, and agricultural applications
Vol 5, Issue 3, 2024
VIEWS - 2757 (Abstract)
Download PDF
Abstract
A concise review of the main current natural sources used to produce chitin—the starting material to produce chitooligosaccharides (COS)—is presented, including algae, arthropods, birds, fish, fungi, mollusks, and, possibly, plants. The principal approaches addressed to produce COSs, grouped as physical, chemical, and biological processes, are also outlined. Subsequently, the COS more relevant applications related to agriculture are briefly outlined, i.e., induction of innate immunity in plants, growth biostimulation, soil amending, biocidal activity, etc. Some interesting findings of this review are: (a) A clear relationship has been undoubtedly established between the low molecular weights (MWs) of these chitinous materials and their striking bioactivities. (b) There is no universal consensus about the limit MW below which a substance can be considered a COS, and some of the proposed limit values are supported in works that have not proposed them. (c) The preparation and application of COS is an active field of research due to the accessibility of chitin sources anywhere and the variety of preparation methods available, as well as the multiple possibilities of modification that these materials offer for the preparation of bioactive derivatives. (d) The chemical modification of the great number of existing COS by a wide range of agents and approaches, including computer simulation studies, is a virgin field that could generate products with powerful elicitor properties. (e) Biocidal activities of COSs, advantaged with their greater water solubilities than chitin and chitosan, are remarkably attractive due to the possibility of replacing, partial or completely, injurious synthetic products currently in use. Similarly, this review makes it possible to appreciate that the preparation and separation of COS with well-defined structures could boost the discovery of the specific regulatory mechanisms that each oligomer species can activate (or repress), that is, defense mechanisms in plants.
Keywords
References
- Lárez-Velásquez C. Chitosan: an overview of its multiple advantages for creating sustainable development poles. Polímeros. 2023; 33(1). doi: 10.1590/0104-1428.20220103
- Fan Y, Liu J, Liu Z, et al. Chitin amendments eliminate the negative impacts of continuous cropping obstacles on soil properties and microbial assemblage. Frontiers in Plant Science. 2022; 13. doi: 10.3389/fpls.2022.1067618
- Guo W, Ding X, Zhang H, et al. Recent Advances of Chitosan-Based Hydrogels for Skin-Wound Dressings. Gels. 2024; 10(3): 175. doi: 10.3390/gels10030175
- Lyalina T, Shagdarova B, Zhuikova Y, et al. Effect of Seed Priming with Chitosan Hydrolysate on Lettuce (Lactuca sativa) Growth Parameters. Molecules. 2023; 28(4): 1915. doi: 10.3390/molecules28041915
- Liu T, Tang Q, Lei H, et al. Preparation, physicochemical and biological evaluation of chitosan Pleurotus ostreatus polysaccharides active films for food packaging. International Journal of Biological Macromolecules. 2024; 254: 127470. doi: 10.1016/j.ijbiomac.2023.127470
- Rasool A, Rizwan M, Islam A, et al. Chitosan‐Based Smart Polymeric Hydrogels and Their Prospective Applications in Biomedicine. Starch - Stärke. 2021; 76(1-2). doi: 10.1002/star.202100150
- Nirmala MJ, Nayak M, Narasimhan K, Rishikesh KS, Nagarajan R. 2023. Chitosan-Based Nanofertilizer: Types, Formulations, and Plant Promotion Mechanism. In: Abd-Elsalam KA, Alghuthaymi MA (editors). Nanofertilizers for Sustainable Agroecosystems: Recent Advances and Future Trends. Springer, Cham; 2024. pp. 283-316. doi: 10.1007/978-3-031-41329-2_11
- Beula Isabel J, Balamurugan A, Renuka Devi P, et al. Chitosan-encapsulated microbial biofertilizer: A breakthrough for enhanced tomato crop productivity. - Macromolecules. 2024; 260: 129462. doi: 10.1016/j.ijbiomac.2024.129462
- Zor M, Güçlü K, Özyürek M. Development of silver nanoparticle-chitosan composite film for determination of total antioxidant capacity of some fruit juices and plant extracts. Journal of Taibah University for Science. 2024; 18(1). doi: 10.1080/16583655.2024.2331436
- Rinaudo M. Chitin and chitosan: Properties and applications. Progress in Polymer Science. 2006; 31(7): 603-632. doi: 10.1016/j.progpolymsci.2006.06.001
- Lizardi-Mendoza J, Argüelles Monal WM, Goycoolea Valencia FM. Chemical Characteristics and Functional Properties of Chitosan. In: Bautista-Baños S, Romanazzi G, Jiménez-Aparicio A (editors). Chitosan in the Preservation of Agricultural Commodities. Academic Press; 2016. pp. 3-31. doi: 10.1016/b978-0-12-802735-6.00001-x
- Kou SG, Peters L, Mucalo M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydrate Polymers. 2022; 282: 119132. doi: 10.1016/j.carbpol.2022.119132
- Rinaudo M, Milas M, Le Dung P. 1993. Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules. 1993; 15(5): 281-285. doi: 10.1016/ 0141-8130(93)90027-J
- Lárez-Velásquez C, Chirinos A, Tacoronte M, Mora A. Chitosan oligomers as bio-stimulants to zucchini (Cucurbita pepo) seeds germination. Agriculture (Poľnohospodárstvo). 2012; 58: 113-119.
- Xia W, Liu P, Zhang J, et al. Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids. 2011; 25(2): 170-179. doi: 10.1016/j.foodhyd.2010.03.003
- Benchamas G, Huang G, Huang S, et al. Preparation and biological activities of chitosan oligosaccharides. Trends in Food Science & Technology. 2021; 107: 38-44. doi: 10.1016/j.tifs.2020.11.027
- Anil S. Potential Medical Applications of Chitooligosaccharides. Polymers 14. 2022; 3558. doi: 10.3390/polym14173558 https://doi.org/10.3390/polym14173558
- IUPAC-IUB Joint Commission on Biochemical Nomenclature. Abbreviated Terminology of Oligosaccharide Chains. Recommendations 1980. European Journal of Biochemistry. 1982; 126(3): 433-437. doi: 10.1111/j.1432-1033.1982.tb06798.x
- Mourya VK, Inamdar NN, Choudhari YM. Chitooligosaccharides: Synthesis, characterization and applications. Polymer Science Series A. 2011; 53(7): 583-612. doi: 10.1134/s0965545x11070066
- Lodhi G, Kim YS, Hwang JW, et al. Chitooligosaccharide and its Derivatives: Preparation and Biological Applications. BioMed Research International. 2014; 2014: 1-13. doi: 10.1155/2014/654913
- Liang TW, Chen WT, Lin ZH, et al. An Amphiprotic Novel Chitosanase from Bacillus mycoides and Its Application in the Production of Chitooligomers with Their Antioxidant and Anti-Inflammatory Evaluation. International Journal of Molecular Sciences. 2016; 17(8): 1302. doi: 10.3390/ijms17081302
- Muzzarelli RA. Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohy-drate Polymers. 1993; 20(1): 7-16. doi: 10.1016/0144-8617(93)90027-2
- Naveed M, Phil L, Sohail M, et al. Chitosan oligosaccharide (COS): An overview. International Journal of Biological Macromolecules. 2019; 129: 827-843. doi: 10.1016/j.ijbiomac.2019.01.192
- Vishu-Kumar BA, Varadaraj MC, Tharanathan RN. Low molecular weight chitosan preparation with the aid of pepsin, characterization, and its bactericidal activity. Biomacromolecules. 2007; 8(2): 566-572. doi: 10.1021/ bm060753z
- Li K, Xing R, Liu S, et al. Separation of chito-oligomers with several degrees of polymerization and study of their antioxidant activity. Carbohydrate Polymers. 2012; 88(3): 896-903. doi: 10.1016/j.carbpol.2012.01.033
- Feng H, Xia W, Shan C, et al. Quaternized chitosan oligomers as novel elicitors inducing protection against B. cinerea in Arabidopsis. International Journal of Biological Macromolecules. 2015; 72: 364-369. doi: 10.1016/j.ijbiomac.2014.06.060
- Winkler A, Dominguez-Nuñez J, Aranaz I, et al. Short-Chain Chitin Oligomers: Promoters of Plant Growth. Marine Drugs. 2017; 15(2): 40. doi: 10.3390/md15020040
- Zhang X, Li K, Liu S, et al. Relationship between the Degree of Polymerization of Chitooligomers and Their Activity Affecting the Growth of Wheat Seedlings under Salt Stress. Journal of Agricultural and Food Chemistry. 2017; 65(2): 501-509. doi: 10.1021/acs.jafc.6b03665
- Basa S, Nampally M, Honorato T, et al. The Pattern of Acetylation Defines the Priming Activity of Chitosan Tetramers. Journal of the American Chemical Society. 2020; 142(4): 1975-1986. doi: 10.1021/jacs.9b11466
- Egusa M, Matsukawa S, Miura C, et al. Improving nitrogen uptake efficiency by chitin nanofiber promotes growth in tomato. International Journal of Biological Macromolecules. 2020; 151: 1322-1331. doi: 10.1016/j.ijbiomac.2019.10.178
- Zhou J, Liu X, Yuan F, et al. Biocatalysis of Heterogenously-Expressed Chitosanase for the Preparation of Desirable Chitosan Oligosaccharides Applied against Phytopathogenic Fungi. ACS Sustainable Chemistry & Engineering. 2020; 8(12): 4781-4791. doi: 10.1021/acssuschemeng.9b07288
- Li N, Lu Y, Sheng X, et al. Recent Progress in Enzymatic Preparation of Chitooligosaccharides with a Single Degree of Polymerization and Their Potential Applications in the Food Sector. Applied Biochemistry and Biotechnology. 2024; 1-15. doi: 10.1007/s12010-024-04876-9
- Shahraki H, Basseri HR, Mirahmadi H, et al. Evaluation of Antibacterial and Antifungal Activity of Chitosan in Integument of Cockroaches. International Journal of Basic Science in Medicine. 2018; 3(3): 104-108. doi: 10.15171/ijbsm.2018.19
- Ibitoye EB, Lokman IH, Hezmee MNM, et al. Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomedical Materials. 2018; 13(2): 025009. doi: 10.1088/1748-605x/aa9dde
- Azlan NS, Edinur HA, Ghafar NA, et al. Optimization and characterization of chitosan extracted from Mucor rouxii. In: Proceedings of the IOP Conference Series: Earth and Environmental Science. 2020; 596(1): 012030. doi: 10.1088/1755-1315/596/1/012030
- Trincone A. Enzymatic technologies for marine polysaccharides. CRC Press; 2019. doi: 10.1201/9780429058653
- Kou SG, Peters LM, Mucalo MR. Chitosan: a review of sources and preparation methods. International Journal of Biological Macromolecules. 2021; 169: 85-94. doi: 10.1016/j.ijbiomac.2020.12.005
- Kumari S, Rath PK. Extraction and Characterization of Chitin and Chitosan from (Labeo rohit) Fish Scales. Procedia Materials Science. 2014; 6: 482-489. doi: 10.1016/j.mspro.2014.07.062
- Jalal AF. Optimization of Chitin Extraction from Chicken Feet. Journal of Analytical & Bioanalytical Techniques. 2012; 03(05). doi: 10.4172/2155-9872.1000145
- Chiu HF, Huang SR, Lu YY, et al. Antimutagenicity, antibacteria, and water holding capacity of chitosan from Luffa aegyptiaca Mill and Cucumis sativus L. Journal of food biochemistry. 2017; 41(3): e12362. doi: 10.1111/(ISSN)1745-4514
- Jiang PL, Chien MY, Sheu MT, et al. Dried Fruit of the Luffa Sponge as a Source of Chitin for Applications as Skin Substitutes. BioMed Research International. 2014; 2014: 1-9. doi: 10.1155/2014/458287
- Wu CC, Lai N, Chen BY, et al. Feasibility study of chitosan extraction from waste leaves of Luffa cylindrica for bioresource recycling. Sustainable Chemistry and Pharmacy. 2022; 30: 100864. doi: 10.1016/j.scp.2022.100864
- Chiriboga O, Rorrer GL. Phosphate addition strategies for enhancing the co-production of lipid and chitin nanofibers during fed-batch cultivation of the diatom Cyclotella sp. Algal Research. 2019; 38: 101403. doi: 10.1016/j.algal.2018.101403
- Gachhi DB, Hungund BS. Two-phase extraction, characterization, and biological evaluation of chitin and chitosan from Rhizopus oryzae. Journal of Applied Pharmaceutical Science. 2018; 8(11): 116-122. doi: 10.7324/japs.2018.81117
- Sebastian J, Rouissi T, Brar SK. Fungal chitosan: prospects and challenges. In: Handbook of Chitin and Chitosan. Netherlands: Elsevier; 2020. pp. 419-452. doi: 10.1016/b978-0-12-817970-3.00014-6
- Das SN, Madhuprakash J, Sarma PVSRN, et al. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Critical Reviews in Biotechnology. 2015; 35(1): 29-43. doi: 10.3109/07388551.2013.798255
- Kim S, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate Polymers. 2005; 62(4): 357-368. doi: 10.1016/j.carbpol.2005.08.012
- Naqvi S, Moerschbacher BM. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: An update. Critical Reviews in Biotechnology. 2015; 37(1): 11-25. doi: 10.3109/07388551.2015.1104289
- Vasilieva T, Sigarev A, Kosyakov D, et al. Formation of low molecular weight oligomers from chitin and chitosan stimulated by plasma-assisted processes. Carbohydrate Polymers. 2017; 163: 54-61. doi: 10.1016/j.carbpol.2017.01.026
- Wasikiewicz JM, Yoshii F, Nagasawa N, et al. Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiation Physics and Chemistry. 2005; 73(5): 287-295. doi: 10.1016/j.radphyschem.2004.09.021
- Muley AB, Shingote PR, Patil AP, et al. Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate Polymers. 2019; 210: 289-301. doi: 10.1016/j.carbpol.2019.01.056
- Minh NC, Van Hoa N, Trung TS. Preparation, properties, and application of low-molecular-weight chitosan. In: Thomas S, Pius A, Gopi S (editors). Handbook of Chitin and Chitosan. Elsevier; 2020. pp. 453-471. doi: 10.1016/b978-0-12-817970-3.00015-8
- He X, Xing R, Li K, et al. Beta-chitosan extracted from Loligo Japonica for a potential use to inhibit Newcastle disease. International Journal of Biological Macromolecules. 2016; 82: 614-620. doi: 10.1016/j.ijbiomac.2015.10.059
- Alves HJ, Furman M, Kugelmeier CL, et al. Effect of shrimp shells milling on the molar mass of chitosan. Polímeros. 2017; 27(1): 41-47. doi: 10.1590/0104-1428.2354
- Suryani S, Chaerunisaa AY, Joni IM, et al. Production of Low Molecular Weight Chitosan Using a Combination of Weak Acid and Ultrasonication Methods. Polymers. 2022; 14(16): 3417. doi: 10.3390/polym14163417
- Pandit A, Indurkar A, Deshpande C, et al. A systematic review of physical techniques for chi-tosan degradation. Carbohydrate Polymer Technologies and Applications. 2021; 2: 100033. doi: 10.1016/j.carpta. 2021.100033
- Nguyen TH, Le NA, Tran P, et al. Preparation of water-soluble chitosan oligosaccharides by hydrolysis of chitosan powder with hydrogen peroxide. Heliyon. 2023: 9(9). doi: 10.1016/ j.heliyon.2023.e19565
- Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology. 2016; 48: 40-50. doi: 10.1016/j.tifs.2015.11.007
- Ailincai D, Rosca I, et al. “Chitosan Oligomers—Synthesis, Characterization and Properties”. Cellulose Chemistry and Technology. 2022; 56(7-8): 767-776. doi: 10.35812/cellulosechemtechnol.2022.56.68
- Aljbour ND, Beg MDH, Gimbun J. Acid Hydrolysis of Chitosan to Oligomers Using Hydrochloric Acid. Chemical Engineering & Technology. 2019; 42(9): 1741-1746. doi: 10.1002/ceat.201800527
- Gonçalves C, Ferreira N, Lourenço L. Production of Low Molecular Weight Chitosan and Chitooligosaccharides (COS): A Review. Polymers. 2021; 13(15): 2466. doi: 10.3390/polym13152466
- Taokaew S, Kriangkrai W. Chitinase-Assisted Bioconversion of Chitinous Waste for Development of Value-Added Chito-Oligosaccharides Products. Biology. 2023; 12(1): 87. doi: 10.3390/biology12010087
- Xu Y, Wang H, Zhu B, et al. Biochemical characterization and elucidation action mode of a new endolytic chitosanase for efficient preparation of chitosan oligosaccharides. Biomass Conversion and Biorefinery. 2023. doi: 10.1007/s13399-023-03870-1
- Renuka V, Ravishankar CNR, Krishnamoorthy E, et al. Utilization of Parapeneopsis stylifera shrimp shell waste for the production of chitooligosaccharides using different non-specific enzymes and their characterization. Polymer Bulletin. 2024; 81(3): 2801-2817. doi: 10.1007/s00289-023-04821-6
- Singh A, Benjakul S, Prodpran T. Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. Food Production, Processing and Nutrition. 2019; 1(1). doi: 10.1186/s43014-019-0005-4
- Gonçalves CG, Lourenço L de FH, Philippsen HK, et al. Crude Enzyme Concentrate of Filamentous Fungus Hydrolyzed Chitosan to Obtain Oligomers of Different Sizes. Polymers. 2023; 15(9): 2079. doi: 10.3390/polym15092079
- Sreekumar S, Wattjes J, Niehues A, et al. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nature Communications. 2022; 13(1). doi: 10.1038/s41467-022-34483-3
- Ruano-Rosa D, Sánchez-Hernández E, Baquero-Foz R, et al. Chitosan-Based Bioactive Formulations for the Control of Powdery Mildew in Viticulture. Agronomy. 2022; 12(2): 495. doi: 10.3390/agronomy12020495
- Zhou J, Wen B, Xie H, et al. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food & Function. 2021; 12(3): 926-951. doi: 10.1039/d0fo02768e
- Fan Z, Qin Y, Liu S, et al. The bioactivity of new chitin oligosaccharide dithiocarbamate derivatives evaluated against nematode disease (Meloidogyne incognita). Carbohydrate Polymers. 2019; 224: 115155. doi: 10.1016/j.carbpol.2019.115155
- Elbarbary AM, Mostafa TB. Effect of γ-rays on carboxymethyl chitosan for use as antioxidant and preservative coating for peach fruit. Carbohydrate Polymers. 2014; 104: 109-117. doi: 10.1016/j.carbpol.2014.01.021
- Dzung PD, Phu DV, Du BD, et al. Effect of foliar application of oligochitosan with different molecular weight on growth promotion and fruit yield enhancement of chili plant. Plant Production Science. 2017; 20(4): 389-395. doi: 10.1080/1343943x.2017.1399803
- Van Phu D, Du BD, Tuan LNA, et al. Preparation and Foliar Application of Oligochitosan-Nanosilica on the Enhancement of Soybean Seed Yield. International Journal of Environment, Agriculture and Biotechnology. 2017; 2(1): 421-428. doi: 10.22161/ijeab/2.1.53
- Zhang X, Li K, Liu S, et al. Size effects of chitooligomers on the growth and photosynthetic characteristics of wheat seedlings. Carbohydrate Polymers. 2016; 138: 27-33. doi: 10.1016/j.carbpol.2015.11.050
- Buzón-Durán L, Sánchez-Hernández E, Sánchez-Báscones M, et al. A Coating Based on Bioactive Compounds from Streptomyces spp. and Chitosan Oligomers to Control Botrytis cinerea Preserves the Quality and Improves the Shelf Life of Table Grapes. Plants. 2023; 12(3): 577. doi: 10.3390/plants12030577
- Crosino A, Moscato E, Blangetti M, et al. Extraction of short chain chitooligosaccharides from fungal biomass and their use as promoters of arbuscular mycorrhizal symbiosis. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-83299-6
- Bose SK, Howlader P, Wang W, et al. Oligosaccharide is a promising natural preservative for improving post-harvest preservation of fruit: A review. Food Chemistry. 2021; 341: 128178. doi: 10.1016/j.foodchem.2020.128178
- Yuan X, Zheng J, Jiao S, et al. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydrate Polymers. 2019; 220: 60-70. doi: 10.1016/j.carbpol.2019.05.050
- Vidhyasekaran P. PAMP Signals in Plant Innate Immunity. Springer Netherlands; 2014. doi: 10.1007/978-94-007-7426-1
- Yin H, Du Y, Dong Z. Chitin Oligosaccharide and Chitosan Oligosaccharide: Two Similar but Different Plant Elicitors. Frontiers in Plant Science. 2016; 7. doi: 10.3389/fpls.2016.00522
- Cheplick S, Sarkar D, Bhowmik PC, et al. Improved resilience and metabolic response of transplanted blackberry plugs using chitosan oligosaccharide elicitor treatment. Canadian Journal of Plant Science. 2018; 98(3): 717-731. doi: 10.1139/cjps-2017-0055
- Sarkar D, Bhowmik PC, Shetty K. Antioxidant Enzyme Response of Creeping Bentgrass Clonal Lines with Marine Peptide and Chitosan Oligosaccharide. Agronomy Journal. 2010; 102(3): 981-989. doi: 10.2134/agronj2009.0360
- Wang W, Liu S, Yan M. Synthesis of γ-Aminobutyric Acid-Modified Chitooligosaccharide Derivative and Enhancing Salt Resistance of Wheat Seedlings. Molecules. 2022; 27(10): 3068. doi: 10.3390/molecules27103068
- Zhu J, Liu S, Qin Y, et al. Preparation, characterization, and antifungal evaluation of a new type of aminourea chitooligosaccharide derivatives. Journal of Oceanology and Limnology. 2019; 38(3): 841-850. doi: 10.1007/s00343-019-9099-4
- Moreno A, Jordana A, Grillo R, et al. A study on the molecular existing interactions in nano-herbicides: A chitooligosaccharide/tripolyphosphate loaded with paraquat case. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019; 562: 220-228. doi: 10.1016/j.colsurfa.2018.11.033
- Ngo DN, Qian ZJ, Je JY, et al. Aminoethyl chitooligosaccharides inhibit the activity of angiotensin converting enzyme. Process Biochemistry. 2008; 43(1): 119-123. doi: 10.1016/j.procbio.2007.10.018
- Zou P, Li K, Liu S, et al. Effect of Sulfated Chitooligosaccharides on Wheat Seedlings (Triticum aestivum L.) under Salt Stress. Journal of Agricultural and Food Chemistry. 2016; 64(14): 2815-2821. doi: 10.1021/acs.jafc.5b05624
- Li K, Xing R, Liu S, et al. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. Journal of Agricultural and Food Chemistry. 2020; 68(44): 12203-12211. doi: 10.1021/acs.jafc.0c05316
- Moenne A, González A. Chitosan-, alginate-carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: A historical perspective. Carbohydrate Research. 2021; 503: 108298. doi: 10.1016/j.carres.2021.108298
- Limpens E, van Zeijl A, Geurts R. Lipochitooligosaccharides Modulate Plant Host Immunity to Enable Endo-symbioses. Annual Review of Phytopathology. 2015; 53(1): 311-334. doi: 10.1146/annurev-phyto-080614-120149
- Liang Y, Tóth K, Cao Y, et al. Lipochitooligosaccharide recognition: an ancient story. New Phytologist. 2014; 204(2): 289-296. doi: 10.1111/nph.12898
- Tang C, Zhai Y, Wang Z, et al. Metabolomics and transcriptomics reveal the effect of hetero-chitooligosaccharides in promoting growth of Brassica napus. Scientific Reports. 2022; 12(1). doi: 10.1038/s41598-022-25850-7
- Kendra DF, Hadwiger LA. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Experimental Mycology 8(3): 276-281. doi: 10.1016/0147-5975(84)90013-6
- Rahman MH, Hjeljord LG, Aam BB, et al. Antifungal effect of chito-oligosaccharides with different degrees of polymerization. European Journal of Plant Pathology. 2014; 141(1): 147-158. doi: 10.1007/s10658-014-0533-3
- Xu J, Zhao X, Han X, Du Y. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochemistry and Physiology. 2007; 87(3): 220-228. doi: 10.1016/j.pestbp. 2006.07.013
- Kim SW, Park JK, Lee CH, et al. Comparison of the Antimicrobial Properties of Chitosan Oligosaccharides (COS) and EDTA against Fusarium fujikuroi Causing Rice Bakanae Disease. Current Microbiology. 2016; 72(4): 496-502. doi: 10.1007/s00284-015-0973-9
- Yue L, Wang M, Khan IM, et al. Preparation and characterization of chitosan oligosaccharide derivatives containing cinnamyl moieties with enhanced antibacterial activities. LWT. 2021; 147: 111663. doi: 10.1016/j.lwt.2021.111663
- de Azevedo MIG, Souza PFN, Monteiro Júnior JE, et al. Chitosan and Chitooligosaccharides: Antifungal Potential and Structural Insights. Chemistry & Biodiversity. 2024; 21(6). doi: 10.1002/cbdv.202400044
- Sambyal K, Sharma P, Singh, RV. Antimicrobial Activity of Chitooligosaccharides. In: Kim SK (editor). Chitooligosaccharides: Prevention and Control of Diseases, Cham. Springer International Publishing; 2022. pp. 301-307. doi: 10.1007/978-3-030-92806-3_18
- Karamchandani BM, Chakraborty S, Dalvi SG, et al. Chitosan and its derivatives: Promising biomaterial in averting fungal diseases of sugarcane and other crops. Journal of Basic Microbiology. 2022; 62(5): 533-554. doi: 10.1002/jobm.202100613
- Laokuldilok T, Potivas T, Kanha N, et al. Physicochemical, antioxidant, and antimicrobial properties of chitooligosaccharides produced using three different enzyme treatments. Food Bioscience. 2017; 18: 28-33. doi: 10.1016/j.fbio.2017.03.004
- Vasconcelos MW. Chitosan and chitooligosaccharide utilization in phytoremediation and biofortification programs: current knowledge and future perspectives. Frontiers in Plant Science. 2014; 5. doi: 10.3389/fpls.2014.00616
- Guo B, Zhang Y, Yang J, et al. Water-soluble chitosan promotes remediation of Pb-contaminated soil by Hylotelephium spectabile. Front Environ Sci Eng. 2024; 18(7): 87. doi: 10.1016/j.carbpol.2020.116559
- Liu Y, Yang H, Wen F, et al. Chitooligosaccharide-induced plant stress resistance. Carbo-hydrate Polymers. 2023; 302: 120344. doi: 10.1016/j.carbpol.2022.120344
- Song J, Chen Y, Mi H, et al. Prevalence of antibiotic and metal resistance genes in phytoremediated cadmium and zinc contaminated soil assisted by chitosan and Trichoderma harzianum. Environment International. 2024; 183: 108394. doi: 10.1016/j.envint.2023.108394
- Guan Z, Feng Q. Chitosan and Chitooligosaccharide: The Promising Non-Plant-Derived Prebiotics with Multiple Biological Activities. International Journal of Molecular Sciences. 2022; 23(12): 6761. doi: 10.3390/ijms23126761
- Fu H, Liu H, Ge Y, et al. Chitosan oligosaccharide alleviates and removes the toxicological effects of organophosphorus pesticide chlorpyrifos residues. Journal of Hazardous Materials. 2023; 446: 130669. doi: 10.1016/j.jhazmat.2022.130669
- Bonin M, Sreekumar S, Cord-Landwehr S, et al. Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases. International Journal of Molecular Sciences. 2020; 21(21): 7835. doi: 10.3390/ijms21217835
- Giraldo JD, García Y, Vera M, et al. Alternative processes to produce chitin, chitosan, and their oligomers. Carbohydrate Polymers. 2024; 121924. doi: 10.1016/j.carbpol.2024.121924
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Cristóbal Lárez-Velásquez, Floralba López
License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Prof. Zhengjun Qiu
Zhejiang University, China

Cheng Sun
Academician of World Academy of Productivity Science; Executive Chairman, World Confederation of Productivity Science China Chapter, China
Indexing & Archiving
-
-
-
-
-
-
- J-Gate
-
-
-
In the realm of modern agriculture, the integration of cutting-edge technologies is revolutionizing the way we approach sustainable farming practices. A recent study published in Advances in Modern Agriculture titled "Classification of cotton water stress using convolutional neural networks and UAV-based RGB imagery" has garnered significant attention for its innovative approach to precision irrigation management. Conducted by researchers from Institute of Data Science and the AgriLife Research and Extension Center of Texas A&M University (authors's information is below). This study introduces a novel method for classifying cotton water stress using unmanned aerial vehicles (UAVs) and convolutional neural networks (CNNs), offering a powerful solution for optimizing water use in agriculture.
Modern agricultural technology is evolving rapidly, with scientists collaborating with leading agricultural enterprises to develop intelligent management practices. These practices utilize advanced systems that provide tailored fertilization and treatment options for large-scale land management.
This journal values human initiative and intelligence, and the employment of AI technologies to write papers that replace the human mind is expressly prohibited. When there is a suspicious submission that uses AI tools to quickly piece together and generate research results, the editorial board of the journal will reject the article, and all journals under the publisher's umbrella will prohibit all authors from submitting their articles.
Readers and authors are asked to exercise caution and strictly adhere to the journal's policy regarding the usage of Artificial Intelligence Generated Content (AIGC) tools.
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.