Chito-oligosaccharides: A mini-review on sources, production, and agricultural applications

Cristóbal Lárez-Velásquez, Floralba López

Article ID: 2730
Vol 5, Issue 3, 2024
DOI: https://doi.org/10.54517/ama.v5i3.2730
VIEWS - 32 (Abstract)

Abstract

A concise review of the main current natural sources used to produce chitin—the starting material to produce chitooligosaccharides (COS)—is presented, including algae, arthropods, birds, fish, fungi, mollusks, and, possibly, plants. The principal approaches addressed to produce COSs, grouped as physical, chemical, and biological processes, are also outlined. Subsequently, the COS more relevant applications related to agriculture are briefly outlined, i.e., induction of innate immunity in plants, growth biostimulation, soil amending, biocidal activity, etc. Some interesting findings of this review are: (a) A clear relationship has been undoubtedly established between the low molecular weights (MWs) of these chitinous materials and their striking bioactivities (b) There is no universal consensus about the limit MW below which a substance can be considered a COS and some of the proposed limit values are supported in works that have not proposed them (c) The preparation and application of COS is an active field of research due to the accessibility of chitin sources anywhere and the variety of preparation methods available, as well as the multiple possibilities of modification that these materials offer for the preparation of bioactive derivatives (d) The chemical modification of the great number of existing COS, by a wide range of agents and approaches, including computer simulation studies, is a virgin field that could generate products with powerful elicitor proper-ties (e) Biocidal activities of COSs, advantaged with their greater water solubilities than chitin and chitosan, are remarkably attractive due to the possibility of replacing, partial or completely, injurious synthetic products currently in use. Similarly, this review makes it possible to appreciate that the preparation and separation of COS with well-defined structures could boost the discovery of the specific regulatory mechanisms that each oligomer species can activate (or repress), that is, defense mechanisms in plants.


Keywords

COS; depolymerization; chemical modification; enzymatic methods; plant growth

Full Text:

PDF



References

1. Lárez-Velásquez C. Chitosan: an overview of its multiple advantages for creating sustainable development poles. Polímeros. 2023; 33(1). doi: 10.1590/0104-1428.20220103

2. Fan Y, Liu J, Liu Z, et al. Chitin amendments eliminate the negative impacts of continuous cropping obstacles on soil properties and microbial assemblage. Frontiers in Plant Science. 2022; 13. doi: 10.3389/fpls.2022.1067618

3. Guo W, Ding X, Zhang H, et al. Recent Advances of Chitosan-Based Hydrogels for Skin-Wound Dressings. Gels. 2024; 10(3): 175. doi: 10.3390/gels10030175

4. Lyalina T, Shagdarova B, Zhuikova Y, et al. Effect of Seed Priming with Chitosan Hydrolysate on Lettuce (Lactuca sativa) Growth Parameters. Molecules. 2023; 28(4): 1915. doi: 10.3390/molecules28041915

5. Liu T, Tang Q, Lei H, et al. Preparation, physicochemical and biological evaluation of chitosan Pleurotus ostreatus polysaccharides active films for food packaging. International Journal of Biological Macromolecules. 2024; 254:127470. doi: 10.1016/j.ijbiomac.2023.127470

6. Rasool A, Rizwan M, Islam A, et al. Chitosan‐Based Smart Polymeric Hydrogels and Their Prospective Applications in Biomedicine. Starch - Stärke. 2021; 76(1–2). doi: 10.1002/star.202100150

7. Nirmala MJ, Nayak M, Narasimhan K, Rishikesh KS, Nagarajan R. 2023. Chitosan-Based Nanofertilizer: Types, Formulations, and Plant Promotion Mechanism. In Nanofertilizers for Sustainable Agroecosystems. Nanotechnology in the Life Sciences, Abd-Elsalam KA, Alghuthaymi MA (eds), Springer, Cham. DOI: 10.1007/978-3-031-41329-2_11

8. Beula Isabel J, Balamurugan A, Renuka Devi P, et al. Chitosan-encapsulated microbial biofertilizer: A breakthrough for enhanced tomato crop productivity. – Macromolecules. 2024; 260: 129462. doi: 10.1016/j.ijbiomac.2024.129462

9. Zor M, Güçlü K, Özyürek M. Development of silver nanoparticle-chitosan composite film for determination of total antioxidant capacity of some fruit juices and plant extracts. Journal of Taibah University for Science. 2024; 18(1). doi: 10.1080/16583655.2024.2331436

10. Rinaudo M. Chitin and chitosan: Properties and applications. Progress in Polymer Science. 2006; 31(7): 603–632. doi: 10.1016/j.progpolymsci.2006.06.001

11. Lizardi-Mendoza J, Argüelles Monal WM, Goycoolea Valencia FM. Chemical Characteristics and Functional Properties of Chitosan. Chitosan in the Preservation of Agricultural Commodities. 2016; 3–31. doi: 10.1016/b978-0-12-802735-6.00001-x

12. Kou SG, Peters L, Mucalo M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydrate Polymers. 2022; 282: 119132. doi: 10.1016/j.carbpol.2022.119132

13. Rinaudo M, Milas M, Le Dung P. 1993. Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules. 1993; 15(5): 281–285. doi: 10.1016/ 0141-8130(93)90027-J

14. Lárez-Velásquez C, Chirinos A, Tacoronte M, Mora A. Chitosan oligomers as bio-stimulants to zucchini (Cucurbita pepo) seeds germination. Agriculture (Poľnohospodárstvo). 2012; 58:113–119.

15. Xia W, Liu P, Zhang J, et al. Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids. 2011; 25(2): 170–179. doi: 10.1016/j.foodhyd.2010.03.003

16. Benchamas G, Huang G, Huang S, et al. Preparation and biological activities of chitosan oligosaccharides. Trends in Food Science & Technology. 2021; 107: 38–44. doi: 10.1016/j.tifs.2020.11.027

17. Anil S. Potential Medical Applications of Chitooligosaccharides. Polymers 14. 2022; 3558. doi: 10.3390/polym14173558 https://doi.org/10.3390/polym14173558

18. IUPAC-IUB Joint Commission on Biochemical Nomenclature. Abbreviated Terminology of Oligosaccharide Chains. Recommendations 1980. European Journal of Biochemistry. 1982; 126(3): 433–437. doi: 10.1111/j.1432-1033.1982.tb06798.x

19. Mourya VK, Inamdar NN, Choudhari YM. Chitooligosaccharides: Synthesis, characterization and applications. Polymer Science Series A. 2011; 53(7): 583–612. doi: 10.1134/s0965545x11070066

20. Lodhi G, Kim YS, Hwang JW, et al. Chitooligosaccharide and Its Derivatives: Preparation and Biological Applications. BioMed Research International. 2014; 2014: 1–13. doi: 10.1155/2014/654913

21. Liang TW, Chen WT, Lin ZH, et al. An Amphiprotic Novel Chitosanase from Bacillus mycoides and Its Application in the Production of Chitooligomers with Their Antioxidant and Anti-Inflammatory Evaluation. International Journal of Molecular Sciences. 2016; 17(8): 1302. doi: 10.3390/ijms17081302

22. Muzzarelli RA. Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohy-drate Polymers. 1993; 20(1): 7–16. doi: 10.1016/0144-8617(93)90027-2

23. Naveed M, Phil L, Sohail M, et al. Chitosan oligosaccharide (COS): An overview. International Journal of Biological Macromolecules. 2019; 129: 827–843. doi: 10.1016/j.ijbiomac.2019.01.192

24. Vishu-Kumar BA, Varadaraj MC, Tharanathan RN. Low molecular weight chitosan preparation with the aid of pepsin, characterization, and its bactericidal activity. Biomacromolecules. 2007; 8(2): 566–572. doi: 10.1021/ bm060753z

25. Li K, Xing R, Liu S, et al. Separation of chito-oligomers with several degrees of polymerization and study of their antioxidant activity. Carbohydrate Polymers. 2012; 88(3): 896–903. doi: 10.1016/j.carbpol.2012.01.033

26. Feng H, Xia W, Shan C, et al. Quaternized chitosan oligomers as novel elicitors inducing protection against B. cinerea in Arabidopsis. International Journal of Biological Macromolecules. 2015; 72: 364–369. doi: 10.1016/j.ijbiomac.2014.06.060

27. Winkler A, Dominguez-Nuñez J, Aranaz I, et al. Short-Chain Chitin Oligomers: Promoters of Plant Growth. Marine Drugs. 2017; 15(2): 40. doi: 10.3390/md15020040

28. Zhang X, Li K, Liu S, et al. Relationship between the Degree of Polymerization of Chitooligomers and Their Activity Affecting the Growth of Wheat Seedlings under Salt Stress. Journal of Agricultural and Food Chemistry. 2017; 65(2): 501–509. doi: 10.1021/acs.jafc.6b03665

29. Basa S, Nampally M, Honorato T, et al. The Pattern of Acetylation Defines the Priming Activity of Chitosan Tetramers. Journal of the American Chemical Society. 2020; 142(4): 1975–1986. doi: 10.1021/jacs.9b11466

30. Egusa M, Matsukawa S, Miura C, et al. Improving nitrogen uptake efficiency by chitin nanofiber promotes growth in tomato. International Journal of Biological Macromolecules. 2020; 151: 1322–1331. doi: 10.1016/j.ijbiomac.2019.10.178

31. Zhou J, Liu X, Yuan F, et al. Biocatalysis of Heterogenously-Expressed Chitosanase for the Preparation of Desirable Chitosan Oligosaccharides Applied against Phytopathogenic Fungi. ACS Sustainable Chemistry & Engineering. 2020; 8(12): 4781–4791. doi: 10.1021/acssuschemeng.9b07288

32. Li N, Lu Y, Sheng X, et al. Recent Progress in Enzymatic Preparation of Chitooligosaccharides with a Single Degree of Polymerization and Their Potential Applications in the Food Sector. Applied Biochemistry and Biotechnology. 2024; 1-15. doi: 10.1007/s12010-024-04876-9

33. Shahraki H, Basseri HR, Mirahmadi H, et al. Evaluation of Antibacterial and Antifungal Activity of Chitosan in Integument of Cockroaches. International Journal of Basic Science in Medicine. 2018; 3(3): 104–108. doi: 10.15171/ijbsm.2018.19

34. Ibitoye EB, Lokman IH, Hezmee MNM, et al. Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomedical Materials. 2018; 13(2): 025009. doi: 10.1088/1748-605x/aa9dde

35. Azlan NS, Edinur HA, Ghafar NA, et al. Optimization and characterization of chitosan extracted from Mucor rouxii. In: Proceedings of the IOP Conference Series: Earth and Environmental Science. 2020; 596(1): 012030. doi: 10.1088/1755-1315/596/1/012030

36. Trincone A. Enzymatic technologies for marine polysaccharides. CRC Press; 2019. doi: 10.1201/9780429058653

37. Kou SG, Peters LM, Mucalo MR. Chitosan: a review of sources and preparation methods. Int J Biol Macromol. 2021; 169: 85–94. doi: 10.1016/j.ijbiomac.2020.12.005

38. Kumari S, Rath PK. Extraction and Characterization of Chitin and Chitosan from (Labeo rohit) Fish Scales. Procedia Materials Science. 2014; 6: 482–489. doi: 10.1016/j.mspro.2014.07.062

39. Jalal AF. Optimization of Chitin Extraction from Chicken Feet. Journal of Analytical & Bioanalytical Techniques. 2012; 03(05). doi: 10.4172/2155-9872.1000145

40. Chiu HF, Huang SR, Lu YY, et al. Antimutagenicity, antibacteria, and water holding capacity of chitosan from Luffa aegyptiaca Mill and Cucumis sativus L. Journal of food biochemistry. 2017; 41(3): e12362. doi: 10.1111/(ISSN)1745-4514

41. Jiang PL, Chien MY, Sheu MT, et al. Dried Fruit of the Luffa Sponge as a Source of Chitin for Applications as Skin Substitutes. BioMed Research International. 2014; 2014: 1–9. doi: 10.1155/2014/458287

42. Wu CC, Lai N, Chen BY, et al. Feasibility study of chitosan extraction from waste leaves of Luffa cylindrica for bioresource recycling. Sustainable Chemistry and Pharmacy. 2022; 30: 100864. doi: 10.1016/j.scp.2022.100864

43. Chiriboga O, Rorrer GL. Phosphate addition strategies for enhancing the co-production of lipid and chitin nanofibers during fed-batch cultivation of the diatom Cyclotella sp. Algal Research. 2019; 38: 101403. doi: 10.1016/j.algal.2018.101403

44. Gachhi DB, Hungund BS. Two-phase extraction, characterization, and biological evaluation of chitin and chitosan from Rhizopus oryzae. Journal of Applied Pharmaceutical Science. 2018; 8(11): 116–122. doi: 10.7324/japs.2018.81117

45. Sebastian J, Rouissi T, Brar SK. Fungal chitosan: prospects and challenges. In: Handbook of Chitin and Chitosan. Netherlands: Elsevier; 2020. pp. 419–452. doi: 10.1016/b978-0-12-817970-3.00014-6

46. Das SN, Madhuprakash J, Sarma PVSRN, et al. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Critical Reviews in Biotechnology. 2015; 35(1): 29–43. doi: 10.3109/07388551.2013.798255

47. Kim S, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate Polymers. 2005; 62(4): 357–368. doi: 10.1016/j.carbpol.2005.08.012

48. Naqvi S, Moerschbacher BM. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: An update. Critical Reviews in Biotechnology. 2015; 37(1): 11–25. doi: 10.3109/07388551.2015.1104289

49. Vasilieva T, Sigarev A, Kosyakov D, et al. Formation of low molecular weight oligomers from chitin and chitosan stimulated by plasma-assisted processes. Carbohydrate Polymers. 2017; 163: 54–61. doi: 10.1016/j.carbpol.2017.01.026

50. Wasikiewicz JM, Yoshii F, Nagasawa N, et al. Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiation Physics and Chemistry. 2005; 73(5): 287–295. doi: 10.1016/j.radphyschem.2004.09.021

51. Muley AB, Shingote PR, Patil AP, et al. Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate Polymers. 2019; 210: 289–301. doi: 10.1016/j.carbpol.2019.01.056

52. Minh NC, Van Hoa N, Trung TS. Preparation, properties, and application of low-molecular-weight chitosan. In: Handbook of Chitin and Chitosan. Elsevier; 2020. pp. 453–471. doi: 10.1016/b978-0-12-817970-3.00015-8

53. He X, Xing R, Li K, et al. Beta-chitosan extracted from Loligo Japonica for a potential use to inhibit Newcastle disease. International Journal of Biological Macromolecules. 2016; 82: 614–620. doi: 10.1016/j.ijbiomac.2015.10.059

54. Alves HJ, Furman M, Kugelmeier CL, et al. Effect of shrimp shells milling on the molar mass of chitosan. Polímeros. 2017; 27(1): 41–47. doi: 10.1590/0104-1428.2354

55. Suryani S, Chaerunisaa AY, Joni IM, et al. Production of Low Molecular Weight Chitosan Using a Combination of Weak Acid and Ultrasonication Methods. Polymers. 2022; 14(16): 3417. doi: 10.3390/polym14163417

56. Pandit A, Indurkar A, Deshpande C, et al. 2021. A systematic review of physical techniques for chi-tosan degradation. Carbohydrate Polymer Technologies and Applications, 2: 100033. doi: 10.1016/j.carpta. 2021.100033

57. Nguyen TH, Le NA, Tran P, et al. Preparation of water-soluble chitosan oligosaccharides by hydrolysis of chitosan powder with hydrogen peroxide. Heliyon. 2023: 9(9). doi: 10.1016/ j.heliyon.2023.e19565

58. Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology. 2016; 48: 40–50. doi: 10.1016/j.tifs.2015.11.007

59. Ailincai D, Rosca I, et al. “Chitosan Oligomers—Synthesis, Characterization and Properties”. Cellulose Chemistry and Technology. 2022; 56(7–8): 767–776. doi: 10.35812/cellulosechemtechnol.2022.56.68

60. Aljbour ND, Beg MDH, Gimbun J. Acid Hydrolysis of Chitosan to Oligomers Using Hydrochloric Acid. Chemical Engineering & Technology. 2019; 42(9): 1741–1746. doi: 10.1002/ceat.201800527

61. Gonçalves C, Ferreira N, Lourenço L. Production of Low Molecular Weight Chitosan and Chitooligosaccharides (COS): A Review. Polymers. 2021; 13(15): 2466. doi: 10.3390/polym13152466

62. Taokaew S, Kriangkrai W. Chitinase-Assisted Bioconversion of Chitinous Waste for Development of Value-Added Chito-Oligosaccharides Products. Biology. 2023; 12(1): 87. doi: 10.3390/biology12010087

63. Xu Y, Wang H, Zhu B, et al. Biochemical characterization and elucidation action mode of a new endolytic chitosanase for efficient preparation of chitosan oligosaccharides. Biomass Conversion and Biorefinery. 2023. doi: 10.1007/s13399-023-03870-1

64. Renuka V, Ravishankar CNR, Krishnamoorthy E, et al. Utilization of Parapeneopsis stylifera shrimp shell waste for the production of chitooligosaccharides using different non-specific enzymes and their characterization. Polymer Bulletin. 2024; 81(3): 2801–2817. doi: 10.1007/s00289-023-04821-6

65. Singh A, Benjakul S, Prodpran T. Chitooligosaccharides from squid pen prepared using different enzymes: characteristics and the effect on quality of surimi gel during refrigerated storage. Food Production, Processing and Nutrition. 2019; 1(1). doi: 10.1186/s43014-019-0005-4

66. Gonçalves CG, Lourenço L de FH, Philippsen HK, et al. Crude Enzyme Concentrate of Filamentous Fungus Hydrolyzed Chitosan to Obtain Oligomers of Different Sizes. Polymers. 2023; 15(9): 2079. doi: 10.3390/polym15092079

67. Sreekumar S, Wattjes J, Niehues A, et al. Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nature Communications. 2022; 13(1). doi: 10.1038/s41467-022-34483-3

68. Ruano-Rosa D, Sánchez-Hernández E, Baquero-Foz R, et al. Chitosan-Based Bioactive Formulations for the Control of Powdery Mildew in Viticulture. Agronomy. 2022; 12(2): 495. doi: 10.3390/agronomy12020495

69. Zhou J, Wen B, Xie H, et al. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food & Function. 2021; 12(3): 926–951. doi: 10.1039/d0fo02768e

70. Fan Z, Qin Y, Liu S, et al. The bioactivity of new chitin oligosaccharide dithiocarbamate derivatives evaluated against nematode disease (Meloidogyne incognita). Carbohydrate Polymers. 2019; 224: 115155. doi: 10.1016/j.carbpol.2019.115155

71. Elbarbary AM, Mostafa TB. Effect of γ-rays on carboxymethyl chitosan for use as antioxidant and preservative coating for peach fruit. Carbohydrate Polymers. 2014; 104: 109–117. doi: 10.1016/j.carbpol.2014.01.021

72. Dzung PD, Phu DV, Du BD, et al. Effect of foliar application of oligochitosan with different molecular weight on growth promotion and fruit yield enhancement of chili plant. Plant Production Science. 2017; 20(4): 389–395. doi: 10.1080/1343943x.2017.1399803

73. Van Phu D, Du BD, Tuan LNA, et al. Preparation and Foliar Application of Oligochitosan-Nanosilica on the Enhancement of Soybean Seed Yield. International Journal of Environment, Agriculture and Biotechnology. 2017; 2(1): 421–428. doi: 10.22161/ijeab/2.1.53

74. Zhang X, Li K, Liu S, et al. Size effects of chitooligomers on the growth and photosynthetic characteristics of wheat seedlings. Carbohydrate Polymers. 2016; 138: 27–33. doi: 10.1016/j.carbpol.2015.11.050

75. Buzón-Durán L, Sánchez-Hernández E, Sánchez-Báscones M, et al. A Coating Based on Bioactive Compounds from Streptomyces spp. and Chitosan Oligomers to Control Botrytis cinerea Preserves the Quality and Improves the Shelf Life of Table Grapes. Plants. 2023; 12(3): 577. doi: 10.3390/plants12030577

76. Crosino A, Moscato E, Blangetti M, et al. Extraction of short chain chitooligosaccharides from fungal biomass and their use as promoters of arbuscular mycorrhizal symbiosis. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-83299-6

77. Bose SK, Howlader P, Wang W, et al. Oligosaccharide is a promising natural preservative for improving post-harvest preservation of fruit: A review. Food Chemistry. 2021; 341: 128178. doi: 10.1016/j.foodchem.2020.128178

78. Yuan X, Zheng J, Jiao S, et al. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydrate Polymers. 2019; 220: 60–70. doi: 10.1016/j.carbpol.2019.05.050

79. Vidhyasekaran P. PAMP Signals in Plant Innate Immunity. Springer Netherlands; 2014. doi: 10.1007/978-94-007-7426-1

80. Yin H, Du Y, Dong Z. Chitin Oligosaccharide and Chitosan Oligosaccharide: Two Similar but Different Plant Elicitors. Frontiers in Plant Science. 2016; 7. doi: 10.3389/fpls.2016.00522

81. Cheplick S, Sarkar D, Bhowmik PC, et al. Improved resilience and metabolic response of transplanted blackberry plugs using chitosan oligosaccharide elicitor treatment. Canadian Journal of Plant Science. 2018; 98(3): 717–731. doi: 10.1139/cjps-2017-0055

82. Sarkar D, Bhowmik PC, Shetty K. Antioxidant Enzyme Response of Creeping Bentgrass Clonal Lines with Marine Peptide and Chitosan Oligosaccharide. Agronomy Journal. 2010; 102(3): 981–989. doi: 10.2134/agronj2009.0360

83. Wang W, Liu S, Yan M. Synthesis of γ-Aminobutyric Acid-Modified Chitooligosaccharide Derivative and Enhancing Salt Resistance of Wheat Seedlings. Molecules. 2022; 27(10): 3068. doi: 10.3390/molecules27103068

84. Zhu J, Liu S, Qin Y, et al. Preparation, characterization, and antifungal evaluation of a new type of aminourea chitooligosaccharide derivatives. Journal of Oceanology and Limnology. 2019; 38(3): 841–850. doi: 10.1007/s00343-019-9099-4

85. Moreno A, Jordana A, Grillo R, et al. A study on the molecular existing interactions in nano-herbicides: A chitooligosaccharide/tripolyphosphate loaded with paraquat case. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019; 562: 220–228. doi: 10.1016/j.colsurfa.2018.11.033

86. Ngo DN, Qian ZJ, Je JY, et al. Aminoethyl chitooligosaccharides inhibit the activity of angiotensin converting enzyme. Process Biochemistry. 2008; 43(1): 119–123. doi: 10.1016/j.procbio.2007.10.018

87. Zou P, Li K, Liu S, et al. Effect of Sulfated Chitooligosaccharides on Wheat Seedlings (Triticum aestivum L.) under Salt Stress. Journal of Agricultural and Food Chemistry. 2016; 64(14): 2815–2821. doi: 10.1021/acs.jafc.5b05624

88. Li K, Xing R, Liu S, et al. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. Journal of Agricultural and Food Chemistry. 2020; 68(44): 12203–12211. doi: 10.1021/acs.jafc.0c05316

89. Moenne A, González A. Chitosan-, alginate-carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: A historical perspective. Carbohydrate Research. 2021; 503: 108298. doi: 10.1016/j.carres.2021.108298

90. Limpens E, van Zeijl A, Geurts R. Lipochitooligosaccharides Modulate Plant Host Immunity to Enable Endo-symbioses. Annual Review of Phytopathology. 2015; 53(1): 311–334. doi: 10.1146/annurev-phyto-080614-120149

91. Liang Y, Tóth K, Cao Y, et al. Lipochitooligosaccharide recognition: an ancient story. New Phytologist. 2014; 204(2): 289–296. doi: 10.1111/nph.12898

92. Tang C, Zhai Y, Wang Z, et al. Metabolomics and transcriptomics reveal the effect of hetero-chitooligosaccharides in promoting growth of Brassica napus. Scientific Reports. 2022; 12(1). doi: 10.1038/s41598-022-25850-7

93. Kendra DF, Hadwiger LA. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Experimental Mycology 8(3): 276–281. doi: 10.1016/0147-5975(84)90013-6

94. Rahman MH, Hjeljord LG, Aam BB, et al. Antifungal effect of chito-oligosaccharides with different degrees of polymerization. European Journal of Plant Pathology. 2014; 141(1): 147–158. doi: 10.1007/s10658-014-0533-3

95. Xu J, Zhao X, Han X, Du Y. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochemistry and Physiology. 2007; 87(3): 220–228. doi: 10.1016/j.pestbp. 2006.07.013

96. Kim SW, Park JK, Lee CH, et al. Comparison of the Antimicrobial Properties of Chitosan Oligosaccharides (COS) and EDTA against Fusarium fujikuroi Causing Rice Bakanae Disease. Current Microbiology. 2016; 72(4): 496–502. doi: 10.1007/s00284-015-0973-9

97. Yue L, Wang M, Khan IM, et al. Preparation and characterization of chitosan oligosaccharide derivatives containing cinnamyl moieties with enhanced antibacterial activities. LWT. 2021; 147: 111663. doi: 10.1016/j.lwt.2021.111663

98. de Azevedo MIG, Souza PFN, Monteiro Júnior JE, et al. Chitosan and Chitooligosaccharides: Antifungal Potential and Structural Insights. Chemistry & Biodiversity. 2024; 21(6). doi: 10.1002/cbdv.202400044

99. Sambyal K, Sharma P, Singh, RV. Antimicrobial Activity of Chitooligosaccharides. In: Chitooligosaccharides: Prevention and Control of Diseases, Cham. Springer International Publishing; 2022. pp. 301–307. doi: 10.1007/978-3-030-92806-3_18

100. Karamchandani BM, Chakraborty S, Dalvi SG, et al. Chitosan and its derivatives: Promising biomaterial in averting fungal diseases of sugarcane and other crops. Journal of Basic Microbiology. 2022; 62(5): 533–554. doi: 10.1002/jobm.202100613

101. Laokuldilok T, Potivas T, Kanha N, et al. Physicochemical, antioxidant, and antimicrobial properties of chitooligosaccharides produced using three different enzyme treatments. Food Bioscience. 2017; 18: 28–33. doi: 10.1016/j.fbio.2017.03.004

102. Vasconcelos MW. Chitosan and chitooligosaccharide utilization in phytoremediation and biofortification programs: current knowledge and future perspectives. Frontiers in Plant Science. 2014; 5. doi: 10.3389/fpls.2014.00616

103. Guo B, Zhang Y, Yang J, et al. Water-soluble chitosan promotes remediation of Pb-contaminated soil by Hylotelephium spectabile. Front Environ Sci Eng. 2024; 18(7): 87. doi: 10.1016/j.carbpol.2020.116559

104. Liu Y, Yang H, Wen F, et al. Chitooligosaccharide-induced plant stress resistance. Carbo-hydrate Polymers. 2023; 302: 120344. doi: 10.1016/j.carbpol.2022.120344

105. Song J, Chen Y, Mi H, et al. Prevalence of antibiotic and metal resistance genes in phytoremediated cadmium and zinc contaminated soil assisted by chitosan and Trichoderma harzianum. Environment International. 2024; 183: 108394. doi: 10.1016/j.envint.2023.108394

106. Guan Z, Feng Q. Chitosan and Chitooligosaccharide: The Promising Non-Plant-Derived Prebiotics with Multiple Biological Activities. International Journal of Molecular Sciences. 2022; 23(12): 6761. doi: 10.3390/ijms23126761

107. Fu H, Liu H, Ge Y, et al. Chitosan oligosaccharide alleviates and removes the toxicological effects of organophosphorus pesticide chlorpyrifos residues. Journal of Hazardous Materials. 2023; 446: 130669. doi: 10.1016/j.jhazmat.2022.130669

108. Bonin M, Sreekumar S, Cord-Landwehr S, et al. Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases. International Journal of Molecular Sciences. 2020; 21(21): 7835. doi: 10.3390/ijms21217835

109. Giraldo JD, García Y, Vera M, et al. Alternative processes to produce chitin, chitosan, and their oligomers. Carbohydrate Polymers. 2024; 121924. doi: 10.1016/j.carbpol.2024.121924

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Cristóbal Lárez-Velásquez, Floralba López

License URL: https://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).