


Advancing sustainable agriculture with beneficial microbes: Enhancing crop growth and yield for food security and human health
Vol 4, Issue 2, 2023
VIEWS - 4330 (Abstract)
Download PDF
Abstract
The application of biofertilizers (beneficial microbes) represents a transformative paradigm in modern agriculture. This paper delves into the multifaceted benefits of biofertilizers in the context of crop production. It examines how biofertilizers work their magic in enhancing crop growth, yield, and quality, underpinning their pivotal role in sustainable agriculture. Beyond these primary advantages, the paper explores the ripple effects of biofertilizer utilization, where it emerges as a linchpin in the global quest for food security. Biofertilizers not only reduce the environmental footprint of agriculture but also contribute to improving human health. This paper synthesizes current knowledge, revealing that biofertilizers have emerged as a potent tool in addressing the challenges of modern agriculture, from crop enhancement to environmental conservation and public health. It serves as a call to action for their wider adoption, heralding the era of biofertilizers as a cornerstone of sustainable agricultural practices.
Keywords
References
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Amanullah, Urooj Khan
License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Prof. Zhengjun Qiu
Zhejiang University, China

Cheng Sun
Academician of World Academy of Productivity Science; Executive Chairman, World Confederation of Productivity Science China Chapter, China
Indexing & Archiving
-
-
-
-
-
-
- J-Gate
-
-
-
In the realm of modern agriculture, the integration of cutting-edge technologies is revolutionizing the way we approach sustainable farming practices. A recent study published in Advances in Modern Agriculture titled "Classification of cotton water stress using convolutional neural networks and UAV-based RGB imagery" has garnered significant attention for its innovative approach to precision irrigation management. Conducted by researchers from Institute of Data Science and the AgriLife Research and Extension Center of Texas A&M University (authors's information is below). This study introduces a novel method for classifying cotton water stress using unmanned aerial vehicles (UAVs) and convolutional neural networks (CNNs), offering a powerful solution for optimizing water use in agriculture.
Modern agricultural technology is evolving rapidly, with scientists collaborating with leading agricultural enterprises to develop intelligent management practices. These practices utilize advanced systems that provide tailored fertilization and treatment options for large-scale land management.
This journal values human initiative and intelligence, and the employment of AI technologies to write papers that replace the human mind is expressly prohibited. When there is a suspicious submission that uses AI tools to quickly piece together and generate research results, the editorial board of the journal will reject the article, and all journals under the publisher's umbrella will prohibit all authors from submitting their articles.
Readers and authors are asked to exercise caution and strictly adhere to the journal's policy regarding the usage of Artificial Intelligence Generated Content (AIGC) tools.
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.