pisco_log Publisher
Page Header

Application of plant indices (red band and near infrared) in avocado plantations

Anderson Mauricio Guerrón Barahona, William Fernando Viera Arroyo, Diego Fabricio Campaña Cruz, Laura Viviana Vásquez Rojas, Carlos Lenin Montufar Delgado

Article ID: 2110
Vol 3, Issue 2, 2022, Article identifier:

VIEWS - 170 (Abstract) 0 (XML)


Avocado is a traditional fruit in the diet of Ecuadorians and requires proper management to ensure its production. The implementation of new technological alternatives, such as the use of spectroscopy indices, allows obtaining data that, when correlated, will optimize crop management. This research validated the use of plant indices based on the red band and near infrared with foliar nitrogen content. The following plant indices were used: normalized difference vegetation index (NDVI) and transformed vegetation index (TVI) from two orthomosaics obtained from images capturing red band and near infrared in avocado plantations. Regressions and correlations were performed between the vegetation indices and the results of the foliar analysis of nitrogen content, generating R2 values of 0.93 for NDVI and 0.95 for TVI. Plant index values can be used to estimate plant vigor based on foliar nitrogen content.


leaf nitrogen content; fruit trees; vegetation index; spectroscopy indexes; vigor

Full Text:



1. Berrio Meneses, V., Alzate Velásquez, D. F., Ramón Valencia, J. A., and Ramón Valencia, J. L. (2018). Optimization system of planning techniques in precision agriculture using drones. Revista Espacios, 39(45), 18. https://www.revistaespacios.com/a18v39n45/18394518.html

2. Cabrera-Bosquet, L., Molero, G., Stellacci, A., Bort, J., Nogués, S., and Araus, J. (2011). NDVI as a po-tential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes subjected to different water and nitrogen conditions. Cereal Re-search Communications, 39(1), 147–159. https://doi.org/10.1556/ crc.39.2011.1.15.

3. Campos León, M. B., and Calderón Zaragoza, E. M. (2015). Foliar analysis for nutritional diagnosis of avocado plantations. Sampling. Junta de Andalucía. Institute for Agricultural and Fisheries Research and Training. https://www.juntadeandalucia.es/agriculturaypesca/ifapa/servifapa/registro-servifapa/173568a2–8844–49a7-a873-da0f7139fbe0.

4. Casassa Bastres, D. A. 2019. Relationship between NDVI and nitrogen content in a forage maize crop in the Valdivia agroecosystem. Universidad Austral de Chile. http://cybertesis.uach.cl/tesis/uach/2019/ fac335r/doc/fac335r.pdf.

5. Crusiol, L. G. T., Carvalho, J. F. C., Sibaldelli, R. N. R., Neiverth, W., Do Rio, A., Ferreira, L. C., Procópio, S. O., Mertz-Henning, L. M., Nepomuceno, A. L., Neumaier, N., and Farias, J. R. B. (2017). NDVI var-iation according to the time of measurement, sam-pling size, positioning of sensor and water regime in different soybean cultivars. Precision Agriculture, 18(4), 470–490. https://doi.org/10.1007/s11119–016–9465–6.

6. Escobar Pardo, O. (2015). Spectral responses to nitrogen and potassium fertilization in banana crop (Musa AAA Simmonds), case Municipality Zona Bananera. National University of Colombia. https://repositorio.unal.edu.co/handle/unal/56137

7. Gaona, P., Vásquez, L., Viera, W., Morales, C., Viteri, P., Sotomayor, A., Medina, L., Mejía, P., and Cartagena, Y. (2020). Effect of two levels of nitrogen and potassium applied by fertigation on growth variables and macro- and micronutrient concentra-tions in avocado (Persea americana Mill.) Var. Hass. Revista Científica Ecuatoriana, 7(2), 41–48. https://doi.org/10.36331/revista. v7i2.114

8. Hashemi, S. A., Fallah Chai, M. M., and Bayat, S. (2013). An analysis of vegetation indices in relation to tree species diversity using by satellite data in the northern forests of Iran. Arabian Journal of Geosci-ences, 6(9), 3363–3369. https://doi.org/10.1007/s12517–012–0576–8

9. Hunt, E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S. T., Perry, E. M., and Akhmedov, B. (2013). A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Interna-tional Journal of Applied Earth Observation and Geoinformation, 21, 103–112. https://doi.org/10.1016/j.jag.2012.07.020.

10. National Institute of Statistics and Census [INEC] (2018). Encuesta de superficie y producción agropecuaria continua–2018 [Survey of area and continuous agricultural production–2018]. https://www.ecuadorencifras.gob.ec/encuesta-de-superficie-y-produccion-agropecuaria-continua–2018/.

11. National Institute of Statistics and Census [INEC] (2019). Encuesta de superficie y producción agropecuaria continua–2019. https://www.ecuadorencifras.gob.ec/encuesta-de-superficie-y-produccion-agropecuaria-continua–2019/

12. Juzga Solanilla, M. (2016). Comparison of vegeta-tion indices in La Conejera hill in the city of Bogotá. Universidad Militar Nueva Granada. http://hdl.handle.net/10654/15663

13. López-Aguilar, H. A., García-Pérez, J. L., Barrientos-Juárez, E., Gómez, J. A., and Pérez-Hernández, A. (2016). Non-destructive method to assess plant vigor in nursery-grown forest species. In International agronomy system. Durango. http://cimav.repositorioinstitucional.mx/jspui/handle/1004/1765

14. Maresma, Á., Ariza, M., Martínez, E., Lloveras, J., and Martínez-Casasasnovas, J. A. (2016). Analysis of vegetation indices to determine nitrogen applica-tion and yield prediction in maize (Zea mays L.) from a Standard UAV Service. Remote Sensing, 8(12), 973. https://doi.org/10.3390/rs8120973. https://doi.org/10.3390/rs8120973

15. Martínez, J. M., and Mendoza España, M. C. (2014). Balance and perspectives of the use of remote sensing for the study of water resources in the TDPS system. In M. Pouilly, X. Lazzaro, D. Point, and M. Aguirre (eds.), Knowledge baseline on hydrological and hydrobiological resources in the TDPS system with focus on the Lake Titicaca basin (pp. 81–95). IUCN and IRD. http://www.documentation.ird.fr/hor/fdi:010062841

16. Méndez-García, T., Palacios-Mayorga, S., and Rodríguez-Domínguez, L. (2008). Soil, foliar and water quality analysis for avocado cultivation. Terra Latinoamericana, 26(1), 75–84. https://www.terralatinoamericana.org.mx/index.php/terra/article/view/1375. https://www.terralatinoamericana.org.mx/index.php/terra/article/view/1375

17. Meneses Tovar, C. L. (2012). The normalized dif-ferential vegetation index as an indicator of forest degradation. Unasylva: International journal of forestry and forest industries, 62(238), 39–46. https://www.fao.org/3/i2560s/i2560s07.pdf

18. Pat López, E. R. (2015). Nutritional levels, color and spectral reflectance of tree leaves in avocado (Persea americana) orchards in Michoacán. University of Quintana Roo. http://risisbi. uqroo.mx/handle/20.500.12249/371.

19. Piscoya Pérez, L. R. (2019). Normalized difference vegetation index (NDVI) in the district of Puquina, Moquegua. Universidad Nacional Tecnológica de Lima Sur. http://repositorio.untels.edu.pe/jspui/hand- le/123456789/144.

20. Prabhakara, K., Hively, W. D., and McCarty, G. W. (2015). Evaluating the relationship between bio-mass, percent groundcover and remote sensing in-dices across six winter cover crop fields in Maryland, United States. International Journal of Applied Earth Observation and Geoinformation, 39, 88–102. https://doi. org/10.1016/j.jag.2015.03.002.

21. Ramos García, C. A. (2015). Method to estimate nitrogen content in corn (Zea mays L.) crops based on spectrometry. Case study: Puerto Gaitán, Meta. National University of Colombia. https://repositorio.unal.edu.co/handle/unal/56151

22. Rendon Sáenz, J., and Sadehian Khalajabadi, S. (2018). Application of spectral indices to identify nitrogen fertilization needs in coffee. Cenicafé, 69(1), 7–15. https://biblioteca.cenicafe.org/handle/10778/1088

23. Sanjerehei, M. (2014). Assessment of spectral veg-etation indices for estimating vegetation cover in arid and semiarid shrublands. Range Management and Agroforestry, 35(1), 91–100. https://www.indianjournals. com/ijor.aspx?target=ijor:rma&volume=35&issue=1&article=015.

24. Smith, H. L., McAusland, L., & Murchie, E. H. (2017). Don't ignore the green light: exploring diverse roles in plant processes. Journal of Experimental Botany, 68(9), 2099–2110. https://doi.org/10.1093/jxb/erx098

25. Sotelo-Nava, H., Hernández-Castro, E., Villegas-Torres, O. G., Nava, A. D., Sabino-López, J. E., Chino-Cantor, A., Cruz Lagunas, B., and Álvarez Vargas, D. (2017). Nutritional diagnosis of "Hass" avocado (Persea americana Mill.) soil fertility and water quality, in Tepoztlán, Morelos. International Journal of Environmental & Agriculture Research, 3(1), 152–159. https://ijoear.com/issue-detail/issue-January–2017

26. Vian, A. L., Bredemeier, C., Turra, M. A., Giordano, C. P. S., Fochesatto, E., Silva, J. A., and Drum, M. A. (2018). Nitrogen management in wheat based on the normalized difference vegetation index (NDVI). Rural Science, 48(9), e20170743. https://doi.org/10.1590/0103–8478cr20170743. https://doi.org/10.1590/0103–8478cr20170743

27. Viera, A., Sotomayor, A., and Viera, W. (2016). Po-tential of avocado (Persea americana Mill) cultiva-tion in Ecuador as a marketing alternative in the local and international market. UPSE Scientific and Technological Journal, 3(3), 1–9. https://doi.org/10.26423/rctu.v3i3.192. https://doi.org/10.26423/rctu.v3i3.192

28. Viera, W., Cartagena, Y., Toaquiza, J., Gaona, P., Viteri, P., Sotomayor, A., and Medina, L. (2021). Response of 'Hass' avocado under different nitrogen and potassium fertilizer regimes in subtropical Ec-uador. Acta Horticulturae, 1327, 175–180. https://doi.org/10.17660/ActaHortic.2021.1327.23

29. Vilanova de la Torre, M. M., Pérez, R., Cancela, J. J., Fandiño, M., Teijeiro, M. T., Rey, B. J., Mirás-Avalos, J., Pan, D., and González, X. P. (2018). Use of mul-tispectral imaging for the determination of aromatic quality of cv. Mencía. In Actas de Horticultura. III National Symposium on Horticultural Engineering, I Iberian Symposium of the SECH (pp. 171–175). Spanish Society of Horticultural Sciences, Com-munications 78. http://hdl.handle.net/10261/175104

30. Zenteno Cruz, G. A., Palacios Vélez, E., Tijerina Chávez, L., and Flores Magdaleno, H. (2017). Ap-plication of remote sensing technologies for yield estimation in sugarcane. Revista Mexicana de Ciencias Agrícolas, 8(7), 1575–1586. https://doi.org/10.29312/remexca.v8i7.513.

31. Zheng, H., Cheng, T., Li, D., Zhou, X., Yao, X., Tian, Y., Cao, W., and Zhu, Y. (2018). Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sensing, 10(6), 824. https://doi.org/10.3390/rs10060824

DOI: https://doi.org/10.54517/ama.v3i2.2110
(170 Abstract Views, 0 XML Downloads)


  • There are currently no refbacks.

Copyright (c) 2022 Anderson Mauricio Guerrón Barahona, William Fernando Viera Arroyo, Diego Fabricio Campaña Cruz, Laura Viviana Vásquez Rojas, Carlos Lenin Montufar Delgado

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.