AI-driven digital twins for resilient wind turbines under extreme conditions

Peng Zhang, Dong Zhou, Tao Zheng, Jian Zhang, Fujun Zhang, Junlin Heng

Article ID: 3869
Vol 7, Issue 1, 2026
DOI: https://doi.org/10.54517/m3869

Download PDF

Abstract

The increasing deployment of wind turbines in extreme environmental conditions, like high-altitude icing plateaus, introduces significant structural and operational challenges. Harsh conditions, including corrosion fatigue, ice-induced dynamic loads, and fluctuating wind forces, accelerate component degradation and increase maintenance demands. Traditional operation and maintenance (O&M) strategies struggle to adapt to these conditions, demanding a shift towards more proactive, adaptive and intelligent solutions. AI-driven digital twins (DTs) offer a transformative approach by integrating real-time monitoring, predictive analytics, and adaptive control to enhance turbine resilience. This study focuses on enhancing the resilience of onshore wind turbine towers in challenging environments using a digital twin (DT) framework. The case study investigates a 5 MW onshore wind turbine with a lattice-tubular hybrid (LTH) tower, subjected to highly variable wind and environmental loads. Through a DT framework integrating OpenFAST and OpenSees, the study combines multi-physics simulations with supervisory control and data acquisition (SCADA) and structural health monitoring (SHM) data to reconstruct wind-induced loads and predict fatigue deterioration in critical components, such as bolted ring-flange connections. The results demonstrate that the DT-enabled model updating significantly reduces estimated fatigue damage, improving structural reliability and enabling proactive maintenance under fluctuating conditions. Beyond the advances, challenges still remain, including data integration, real-time processing, and cost-effective deployment. Future works are highly advised to focus on refining AI models, enhancing sensor data accuracy, and developing standardized frameworks for DT applications in renewable energy. By addressing these challenges, AI-driven DTs can play a crucial role in the long-term sustainability and resilience of wind energy systems under extreme conditions.


Keywords

Artificial Intelligence (AI); Digital Twins (DTs); Wind Turbines; Extreme Condition; Resilience.


References

1. Hassan Q, Viktor P, Al-Musawi TJ, et al. The renewable energy role in the global energy transformations. Renewable Energy Focus. 2024, 48: 100545. 10.1016/j.ref.2024.100545.

2. Elgendi M, AlMallahi M, Abdelkhalig A, et al. A review of wind turbines in complex terrain. International Journal of Thermofluids. 2023, 17: 100289. 10.1016/j.ijft.2023.100289.

3. Li W, Xu S, Qian B, et al. Large-scale wind turbine load characteristics excited by the wind and grid in complex terrain: A review. Sustainability. 2022, 14(24): 17051. 10.3390/su142417051.

4. Zuo H, Bi K, Hao H. A state-of-the-art review on the vibration mitigation of wind turbines. Renewable and Sustainable Energy Reviews. 2020, 121: 109710. 10.1016/j.rser.2020.109710.

5. Jasiūnas J, Lund PD, Mikkola J. Energy system resilience: A review. Renewable and Sustainable Energy Reviews. 2021, 150: 111476. 10.1016/j.rser.2021.111476.

6. Gao Z, Sheng S. Real-time monitoring, prognosis, and resilient control for wind turbine systems. Renewable Energy. 2018, 116: 1–4. 10.1016/j.renene.2017.10.059.

7. Heng J, Zhang J, Kaewunruen S, et al. Digital twin-based deterioration prognosis of steel wind turbine towers in modular energy islands. CE/Papers. 2023, 6(3–4): 1111–1118. 10.1002/cepa.2573.

8. Leng J, Gardoni P, Wang M, et al. Condition-based structural health monitoring of offshore wind jacket structures: Opportunities, challenges, and perspectives. Structural Health Monitoring. 2023, 22(5): 3558–3575. 10.1177/14759217221148688.

9. Ren Z, Verma AS, Li Y, et al. Offshore wind turbine operations and maintenance: A state-of-the-art review. Renewable and Sustainable Energy Reviews. 2021, 144: 110886. 10.1016/j.rser.2021.110886.

10. Tang X, Heng J, Kaewunruen S, et al. Artificial intelligence-powered digital twins for sustainable and resilient engineering structures. Bauingenieur. 2024, 99(9): 270–276. 10.37544/0005-6650-2024-09-36.

11. Kipchirchir E, Do MH, Njiri JG, et al. Adaptive robust observer-based control for structural load mitigation and speed regulation in commercial wind turbines. IEEE Access. 2024, 12: 38335–38350. 10.1109/ACCESS.2024.3375115.

12. Heng J, Dong Y, Lai L, et al. Digital twins-boosted intelligent maintenance of ageing bridge hangers exposed to coupled corrosion–fatigue deterioration. Automation in Construction. 2024, 167: 105697. 10.1016/j.autcon.2024.105697.

13. Allen BD. Digital twins and living models at NASA. In: Proceedings of the Digital Twin Summit; 2021.

14. Sakr M, Sadhu A. Visualization of structural health monitoring information using Internet-of-Things integrated with building information modeling. Journal of Infrastructure Intelligence and Resilience. 2023, 2(3): 100053. 10.1016/j.iintel.2023.100053.

15. Liu C, Zhang P, Xu X. Literature review of digital twin technologies for civil infrastructure. Journal of Infrastructure Intelligence and Resilience. 2023, 2(3): 100050. 10.1016/j.iintel.2023.100050.

16. Michael J, Blankenbach J, Derksen J, et al. Integrating models of civil structures in digital twins: State-of-the-art and challenges. Journal of Infrastructure Intelligence and Resilience. 2024,3(3): 100100. 10.1016/j.iintel.2024.100100.

17. Lai L, Dong Y, Smyl D. SHM-informed life-cycle intelligent maintenance of fatigue-sensitive detail using Bayesian forecasting and Markov decision process. Structural Health Monitoring. 2024, 23(1): 187–210. 10.1177/14759217231160412.

18. Choudhary A. Internet of Things: A comprehensive overview, architectures, applications, simulation tools, challenges and future directions. Discover Internet of Things. 2024, 4(1): 31. 10.1007/s43926-024-00084-3.

19. Ghaffari K, Delgosha MS, Abdolvand N. Towards cloud computing: A SWOT analysis on its adoption in SMEs. International Journal of Information Technology and Computer Science. 2014, 4(2): 42–52. 10.5121/ijitcs.2014.4202.

20. Stadtmann F, Rasheed A, Kvamsdal T, et al. Digital twins in wind energy: Emerging technologies and industry-informed future directions. IEEE Access. 2023, 11: 110762–110795. 10.1109/ACCESS.2023.3321320.

21. Wang M, Wang C, Hnydiuk-Stefan A, et al. Recent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutions. Ocean Engineering. 2021, 232: 109168. 10.1016/j.oceaneng.2021.109168.

22. Stetco A, Dinmohammadi F, Zhao X, et al. Machine learning methods for wind turbine condition monitoring: A review. Renewable Energy. 2019, 133: 620–635. 10.1016/j.renene.2018.10.047.

23. Jiang T, Frøseth GT, Rønnquist A, et al. A visual inspection and diagnosis system for bridge rivets based on a convolutional neural network. Computer-Aided Civil and Infrastructure Engineering. 2024, 39(24): 3786–3804. 10.1111/mice.13274.

24. Jiang T, Frøseth GT, Wang S, et al. A six-degree-of-freedom camera motion correction method using IMU sensors for photogrammetry and optical measurements. Mechanical Systems and Signal Processing. 2024, 210: 111148. 10.1016/j.ymssp.2024.111148.

25. Hu W, Fang J, Zhang Y, et al. Digital twin of wind turbine surface damage detection based on deep learning-aided drone inspection. Renewable Energy. 2025, 241: 122332. 10.1016/j.renene.2024.122332.

26. Mazare M. Adaptive optimal secure wind power generation control for variable speed wind turbine systems via reinforcement learning. Applied Energy. 2024, 353: 122034. 10.1016/j.apenergy.2023.122034.

27. Singh R, Gill SS. Edge AI: A survey. Internet of Things and Cyber-Physical Systems. 2023, 3: 71–92. 10.1016/j.iotcps.2023.02.004.

28. Hua H, Li Y, Wang T, et al. Edge computing with artificial intelligence: A machine learning perspective. ACM Computing Surveys. 2023, 55(9): 1–35. 10.1145/3555802.

29. Hameed Z, Vatn J, Heggset J. Challenges in the reliability and maintainability data collection for offshore wind turbines. Renewable Energy. 2011, 36(8): 2154–2165. 10.1016/j.renene.2011.01.008.

30. Kong K, Dyer K, Payne C, et al. Progress and trends in damage detection methods, maintenance, and data-driven monitoring of wind turbine blades: A review. Renewable Energy Focus. 2023, 44: 390–412. 10.1016/j.ref.2022.08.005.

31. Zhou L, Chen SX, Ni YQ, et al. Advancement of data-driven structural health monitoring: A research paradigm on AE-based switch rail condition monitoring. Journal of Infrastructure Intelligence and Resilience. 2024, 3(3): 100107. 10.1016/j.iintel.2024.100107.

32. Narayana TL, Venkatesh C, Kiran A, et al. Advances in real-time smart monitoring of environmental parameters using IoT and sensors. Heliyon. 2024, 10(7): e28195. 10.1016/j.heliyon.2024.e28195.

33. Pandit R, Infield D, Santos M. Accounting for environmental conditions in data-driven wind turbine power models. IEEE Transactions on Sustainable Energy. 2022, 14(1): 168–177. 10.1109/TSTE.2022.3204453.

34. Yu X, Fu Y, Li J, et al. Recent advances in wireless sensor networks for structural health monitoring of civil infrastructure. Journal of Infrastructure Intelligence and Resilience. 2024, 3(1): 100066. 10.1016/j.iintel.2023.100066.

35. Chen H, Xie C, Dai J, et al. SCADA data-based working condition classification for condition assessment of wind turbine main transmission system. Energies. 2021, 14(21): 7043. 10.3390/en14217043.

36. Zhu Y, Zhu C, Song C, et al. Improvement of reliability and wind power generation based on wind turbine real-time condition assessment. International Journal of Electrical Power & Energy Systems. 2019, 113: 344–354. 10.1016/j.ijepes.2019.05.027.

37. Mehlan FC, Nejad AR. On the modeling errors of digital twins for load monitoring and fatigue assessment in wind turbine drivetrains. Wind Energy Science. 2025, 10(2): 417–433. 10.5194/wes-10-417-2025.

38. Moghadam FK, Nejad AR. Online condition monitoring of floating wind turbines drivetrain by means of digital twin. Mechanical Systems and Signal Processing. 2022, 162: 108087. 10.1016/j.ymssp.2021.108087.

39. Sivalingam K, Sepulveda M, Spring M, Davies P. A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective. In: Proceedings of the 2018 2nd International Conference on Green Energy and Applications (ICGEA); 24–26 March 2018; Singapore. 10.1109/ICGEA.2018.8356292.

40. Olatunji OO, Adedeji PA, Madushele N, Jen TC. Overview of digital twin technology in wind turbine fault diagnosis and condition monitoring. In: Proceedings of the 2021 IEEE 12th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT); 14–16 May 2021; Cape Town, South Africa. 10.1109/ICMIMT52186.2021.9476186.

41. Yao Q, Liu J, Hu Y. Optimized active power dispatching strategy considering fatigue load of wind turbines during de-loading operation. IEEE Access. 2019, 7: 17439–17449. 10.1109/ACCESS.2019.2893957.

42. Jensen TN, Knudsen T, Bak T. Fatigue-minimising power reference control of a de-rated wind farm. Journal of Physics: Conference Series. 2016, 753(5): 052022. 10.1088/1742-6596/753/5/052022.

43. Pan S, Wang W, Guo X, et al. Improved virtual inertia control of wind turbine generators considering fatigue load. In: Proceedings of the IEEE 13th International Conference on Cyber Technology in Automation, Control, and Intelligent Systems; 11–14 July 2023; Qinhuangdao, China. 10.1109/CYBER59472.2023.10256612.

44. Njiri JG, Beganovic N, Do MH, et al. Consideration of lifetime and fatigue load in wind turbine control. Renewable Energy. 2019, 131: 818–828. 10.1016/j.renene.2018.07.109.

45. Grau L, Jung C, Schindler D. Sounding out the repowering potential of wind energy: A scenario-based assessment from Germany. Journal of Cleaner Production. 2021, 293: 126094. 10.1016/j.jclepro.2021.126094.

46. Lacal-Arántegui R, Uihlein A, Yusta JM. Technology effects in repowering wind turbines. Wind Energy. 2020, 23(3): 660–675. 10.1002/we.2450.

47. Martínez E, Latorre-Biel JI, Jiménez E, et al. Life cycle assessment of a wind farm repowering process. Renewable and Sustainable Energy Reviews. 2018, 93: 260–271. 10.1016/j.rser.2018.05.044.

48. Chen BQ, Liu K, Yu T, et al. Enhancing reliability in floating offshore wind turbines through digital twin technology: A comprehensive review. Energies. 2024, 17(8): 1964. 10.3390/en17081964.

49. Jahanshahi Zeitouni M, Parvaresh A, Abrazeh S, et al. Digital twins-assisted design of advanced controllers for power systems and electronics: Wind turbine as a case study. Inventions. 2020, 5(2): 19. 10.3390/inventions5020019.

50. Lee AJ, Song W, Yu B, et al. Survey of robotics technologies for civil infrastructure inspection. Journal of Infrastructure Intelligence and Resilience. 2023, 2(1): 100018. 10.1016/j.iintel.2022.100018.

51. Xia J, Zou G. Operation and maintenance optimization of offshore wind farms based on digital twin: A review. Ocean Engineering. 2023, 268: 113322. 10.1016/j.oceaneng.2022.113322.

52. Luo Y, Zhou D, Heng J, Dai K, Liu Y, Qiu K. Probabilistic fatigue prognosis of novel ring-flange connections in lattice-tubular hybrid (LTH) wind turbine towers. Thin-Walled Structures. 2025, 209: 112908. 10.1016/j.tws.2025.112908.

53. Xiong C, Dai K, Luo Y, Yang Z, Du H, Tang X. Integrated fatigue assessment method considering average stress effects of large-scale lattice wind turbine support structures. Journal of Constructional Steel Research. 2024, 214: 108492. 10.1016/j.jcsr.2024.108492.

54. Xiong C, Dai K, Luo Y, Yang Z, Qiu K, Tang X. Proposal and application of onshore lattice wind turbine support structure and integrated multi-scale fatigue assessment method. Engineering Structures. 2024, 302: 117314. 10.1016/j.engstruct.2023.117314.

55. Xiong C, Dai K, Luo Y, Wang J. Optimizing dimension selection for rain flow counting in fatigue assessment of large-scale lattice wind turbine support structures: a comprehensive study and design guidance. Thin-Walled Structures. 2024: 112051. 10.1016/j.tws.2024.112051.

56. Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development, NREL/TP-500-38060. National Renewable Energy Laboratory; 2009.

57. Jonkman BJ. TurbSim user’s guide (Version 2.00.00). National Renewable Energy Laboratory; 2014.

58. Maes K, De Roeck G, Lombaert G. Motion tracking of a wind turbine blade during lifting using RTK-GPS/INS. Engineering Structures. 2018, 172: 285-292. 10.1016/j.engstruct.2018.06.041.

59. Zheng T, Heng J, Song J, Zhou D, Luo Y, Dai K. Prognostic digital twinning of lattice-tubular hybrid wind turbine towers exposed to deterioration. Structures. 2025, 79: 109461. 10.1016/j.istruc.2025.109461.

Supporting Agencies



Copyright (c) 2026 Authors

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).