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Abstract: The increasing deployment of wind turbines in extreme environmental conditions, 
like high-altitude icing plateaus, introduces significant structural and operational challenges. 
Harsh conditions, including corrosion fatigue, ice-induced dynamic loads, and fluctuating 
wind forces, accelerate component degradation and increase maintenance demands. Traditional 
operation and maintenance (O&M) strategies struggle to adapt to these conditions, demanding 
a shift towards more proactive, adaptive and intelligent solutions. AI-driven digital twins (DTs) 
offer a transformative approach by integrating real-time monitoring, predictive analytics, and 
adaptive control to enhance turbine resilience. This study focuses on enhancing the resilience 
of onshore wind turbine towers in challenging environments using a digital twin (DT) 
framework. The case study investigates a 5 MW onshore wind turbine with a lattice-tubular 
hybrid (LTH) tower, subjected to highly variable wind and environmental loads. Through 
a DT framework integrating OpenFAST and OpenSees, the study combines multi-physics 
simulations with supervisory control and data acquisition (SCADA) and structural health 
monitoring (SHM) data to reconstruct wind-induced loads and predict fatigue deterioration 
in critical components, such as bolted ring-flange connections. The results demonstrate that 
the DT-enabled model updating significantly reduces estimated fatigue damage, improving 
structural reliability and enabling proactive maintenance under fluctuating conditions. Beyond 
the advances, challenges still remain, including data integration, real-time processing, and 
cost-effective deployment. Future works are highly advised to focus on refining AI models, 
enhancing sensor data accuracy, and developing standardized frameworks for DT applications 
in renewable energy. By addressing these challenges, AI-driven DTs can play a crucial role in 
the long-term sustainability and resilience of wind energy systems under extreme conditions.

Keywords: Artificial Intelligence (AI); Digital Twins (DTs); Wind Turbines; Extreme 
Condition; Resilience.

1. Introduction

1.1 Background and Challenges
Wind energy has become an essential pillar in the global transition to renewable 

energy, offering a sustainable solution to the growing energy demands while reducing 
dependence on fossil fuels [1]. As the deployment of wind turbines expands into 
more extreme environments, like high-altitude icing plateaus, new structural and 
operational challenges emerge, threatening long-term reliability and efficiency.

For instance, wind turbines in high-altitude icing plateaus must endure extreme 
cold, ice and snow accumulation, and increased dynamic loads from ice-induced 
vibrations, which can severely affect structural integrity. Ice accretion on blades alters 
aerodynamic performance, reduces efficiency, and increases loads on the drivetrain 
and tower, potentially leading to structural fatigue and unexpected failures [2–4]. 
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The overall impact of extreme environmental conditions on onshore wind turbine 
structures is depicted in Figure 1, highlighting the challenges posed by icing, low 
temperatures, and fluctuating wind loads in such regions.

Figure 1. Onshore wind turbine structure in extreme conditions.

In these extreme environments, resilience becomes a crucial attribute for wind 
turbine systems. Here, the resilience refers to the ability of the turbine to withstand 
and adapt to harsh environmental conditions, ensuring long-term operational 
reliability despite the challenges posed by corrosion, fatigue, and extreme loading 
conditions [5]. Addressing these challenges requires a paradigm shift in wind turbine 
monitoring and maintenance strategies, moving from traditional reactive approaches 
to more proactive and adaptive solutions. Given the complexity of structural 
degradation in extreme environments, advanced technologies that enable real-time 
failure prediction, dynamic performance optimization, and improved structural 
resilience are essential. This growing need has driven increasing interest DTs, which 
hold the potential to revolutionize wind turbine O&M strategies by providing real-
time insights and proactive management [6–8].

1.2 Motivation for DTs
Traditional O&M strategies, which rely on periodic inspections and reactive 

repairs, often fall short in extreme environments where corrosion, fatigue, and ice-
induced vibrations accelerate structural degradation. These approaches are prone to 
delayed failure detection, high maintenance costs, and a lack of real-time adaptability, 
making them inefficient for ensuring turbine reliability in challenging conditions [9].

DTs offer a proactive solution, enabling real-time monitoring, predictive 
maintenance, and adaptive control. By continuously analyzing sensor data, DTs can 
detect early-stage damage, optimize maintenance schedules, and minimize downtime. 
The integration of AI further enhances decision-making capabilities, failure prediction, 
and performance optimization, ensuring that turbines remain resilient under harsh 
environmental conditions [10]. Beyond maintenance, DTs can dynamically adjust 
operational parameters based on real-time environmental loads, thereby reducing 
excessive stress, extending service life, and improving energy efficiency [11].

This work explores the role of AI-driven DTs in monitoring, managing, and 
optimizing wind turbine structures, emphasizing how these technologies can enhance 
resilience and long-term performance in extreme conditions, ultimately transforming 
traditional wind turbine operation and maintenance practices. Section 2 provides a 
State-of-the-Art Review, discussing the origin and development of DT technologies, 
the fundamentals enabling DTs, and the role of AI-driven DTs for resilient structures. 
Section 3 presents a case study of onshore Wind Turbine Towers, covering the 
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engineering background, simulation and modelling, and the design optimization, 
followed by the results and discussion. Finally, Section 4 concludes with remarks, an 
exploration of challenges, and future directions for research.

2. State-of-the-Art Review

2.1 Origin and Development of DT Technologies
DT technology refers to virtual models that replicate physical assets in real-

time, enabling advanced monitoring, simulation, and predictive analysis, often 
enhanced by AI [12]. The concept of DTs originated in aerospace engineering, 
where NASA pioneered its application to simulate spacecraft conditions and assess 
potential risks before missions [13]. The development of DTs has expanded to both 
civil infrastructure, such as buildings and bridges, where they integrate sensors and 
building information model for real-time SHM, predictive maintenance, and lifecycle 
management [14–16], and the renewable energy sector, where DTs optimize wind 
turbine performance by integrating SHM data and environmental sensors [17].

Figure 2 illustrates a DT framework for wind turbines, integrating various 
components of wind energy systems into a unified model. At the core of this 
framework is the interaction between the physical turbine and its digital counterpart, 
driven by AI to enhance operational efficiency and structural resilience. However, 
the widespread implementation of DTs for wind turbines is often hindered by data 
sparsity, as existing monitoring systems lack comprehensive coverage of all critical 
components across large wind farms. 

Several key milestones have marked the evolution of DT technologies. The 
introduction of the Internet of Things (IoT) [18] allowed for seamless data collection 
from physical assets, while advancements in cloud computing facilitated large-scale 
data processing and storage [19,20]. More recently, AI has played a pivotal role in 
enhancing DT capabilities, enabling predictive maintenance, fault diagnosis, and 
adaptive control for wind turbines operating in extreme environments [21].  

Figure 2. DT Framework for Wind Turbine Structures.
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2.2 Fundamentals Enabling DTs
2.2.1 Artificial Intelligence

AI plays a pivotal role in enabling the functionality of DTs by facilitating 
advanced data analytics, predictive modelling, and intelligent decision-making. 
Machine learning algorithms analyse large datasets from wind turbine sensors to 
uncover patterns, detect anomalies, and predict failures before they occur, supporting 
proactive maintenance and enhancing turbine reliability [22]. Deep learning 
models, particularly convolutional and recurrent neural networks, are employed to 
process complex time-series data from SHM systems, improving fault detection and 
predictive maintenance strategies by identifying subtle damage indicators that may 
not be immediately obvious [23–25]. Reinforcement learning (RL)-based adaptive 
control strategies further optimize turbine performance in real-time by dynamically 
adjusting operational parameters, such as blade pitch and rotor speed, in response to 
changing environmental conditions, thereby improving efficiency and resilience [26].

In addition to AI techniques, computational resources such as edge computing 
[27,28], and specialized hardware like GPUs and FPGAs are crucial for supporting 
the large-scale data processing requirements of DTs. These technologies enable the 
real-time processing of vast datasets, ensuring that the DT models remain highly 
accurate and can effectively assess the resilience of wind turbines.

2.2.2 Data
Effective DT implementation relies on high-quality data acquisition from diverse 

sensing technologies. As shown in Figure 3, SHM sensors, including strain and vision 
sensors, provide real-time insights into the condition of critical components such as 
tower flanges and blades, enabling continuous structural assessment and early failure 
detection [29,30]. Additionally, acoustic emission-based sensing techniques have 
been successfully applied to various infrastructure monitoring tasks, such as rail track 
condition assessment [31]. Complementing these, environmental monitoring sensors, 
which measure wind speed, humidity, and temperature, capture external stressors that 
influence turbine performance and resilience to extreme weather and mechanical fatigue 
[32,33]. Wireless smart sensor networks (WSSN) have become an integral part of 
SHM systems, facilitating efficient measurement, assessment, and maintenance of civil 
infrastructure through real-time monitoring and data exchange [34].

Figure 3. Monitoring framework for wind turbine support structures.
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Beyond data collection, efficient transmission and processing are essential for 
real-time decision-making. Edge computing plays a crucial role by enabling localized 
data processing, reducing latency, and improving the responsiveness of adaptive 
control strategies. By ensuring that high-quality data is processed rapidly and 
accurately, edge computing enhances predictive modelling, AI-driven diagnostics, 
and overall turbine reliability, minimizing failure risks and optimizing long-term 
performance.

2.3 The Role of AI-Driven DTs for Resilient Structures
AI-driven DTs play a critical role in enhancing the resilience of wind turbine 

structures through continuous condition assessment, operational control, repowering, 
and lifespan extension strategies.

2.3.1 Condition Assessment
Condition assessment is crucial for ensuring the long-term reliability and 

operational efficiency of wind turbine structures. DT technology, combined with AI-
driven predictive analytics, enables real-time monitoring and early fault detection, 
thereby enhancing structural performance and reducing maintenance costs.

Wind turbine condition monitoring relies on a combination of SCADA, condition 
monitoring systems (CMS), and DT-based simulations. SCADA provides operational 
data, while CMS integrates sensor-based structural health monitoring. Advanced 
methodologies such as fuzzy synthetic assessment and k-means clustering algorithms 
further refine condition assessment by classifying turbine working conditions and 
optimizing alarm thresholds [35,36]. A data-informed dynamic approach (DIDA) 
can be established for the real-time structural condition assessment of aging towers 
by integrating both prior knowledge from prediction and simulation models and 
posterior observations from in-situ health monitoring and inspections. For instance, 
bolt deterioration is highly prone to fatigue cracking, a failure mode that significantly 
impacts the long-term stability of wind turbine towers. Figure 4 illustrates how 
the DIDA framework enables resilience assessment by continuously updating the 
structural condition of in-service wind towers based on real-time monitoring and 
historical degradation patterns. This approach enhances predictive maintenance 
strategies by dynamically calibrating fatigue life estimations and providing insights 
into future structural evolution.

Figure 4. AI-based structural condition assessment of wind turbines (illustrated with bolted ring-flange connections).
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DT-based condition assessment further enhances predictive maintenance 
capabilities. These virtual models integrate real-time load monitoring, stress analysis, 
and degradation modelling to estimate the remaining useful life (RUL) of critical 
components such as drivetrain shafts and wind turbine gearboxes. Studies show that 
DT-informed fatigue assessments significantly reduce uncertainty in failure prediction 
and maintenance scheduling [37–39].

Additionally, real-time adaptation of control strategies based on condition 
assessment findings has proven to minimize operational risks. AI-enhanced diagnostic 
models help mitigate dynamic loads, reducing fatigue damage accumulation by as 
much as 40% in certain cases [40].

2.3.2 Operational Control
Operational control strategies, particularly those involving AI and DTs, are 

crucial for optimizing wind turbine performance by adjusting parameters like blade 
pitch and rotor speed in response to changing environmental conditions. These 
dynamic adjustments maximize efficiency while reducing excessive wear on key 
components. AI-driven adaptive control systems help balance loads across the turbine 
structure, minimizing fatigue risk and extending the lifespan of critical parts such as 
blades and towers.

AI and DT technologies enable turbines to respond to real-time data, adjusting 
operational parameters to enhance performance and protect structural integrity, 
as depicted in Figure 5. For example, Yao et al. demonstrated that an optimized 
active power dispatching strategy could reduce fatigue loads by up to 57.1% during 
de-loading operations, highlighting the effectiveness of AI-driven adjustments 
in mitigating damage [41]. Similarly, Jensen et al. showed that optimized power 
reference controls could reduce damage equivalent load by up to 58.9%, showcasing 
the impact of predictive control mechanisms [42].

Figure 5. Data-driven method for onshore wind turbine structures under extreme conditions.

These strategies also help manage loads on the turbine structure. Pan et al. 
proposed a virtual inertia control strategy that mitigates fatigue loads from frequency 
regulation, reducing stress on turbine components [43]. Kipchirchir et al. found that 
optimized control could lower dynamic structural loads on rotor blades by 10.7% and 
on towers by 36.2%, contributing to longer turbine lifespans [11].

Additionally, real-time damage assessment integrated with de-rating control 
methods has proven effective in reducing damage accumulation. Njiri et al. reported 
a 40% reduction in damage accumulation, further emphasizing the role of AI and 
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DTs in enhancing turbine durability [44]. These advancements demonstrate that 
operational control, powered by AI and DTs, is key to improving turbine performance 
and extending component lifespans.

2.3.3 Repowering and Lifespan Extension
Repowering is a comprehensive process that upgrades or replaces aging 

wind turbine components, such as blades, generators, and controllers, to enhance 
performance, efficiency, and energy output, thereby extending the lifespan of wind 
farms. This strategy enables wind farms to leverage technological advancements 
without requiring new sites, which is particularly beneficial as prime wind energy 
locations become scarce or costly. With advancements in turbine technology, 
including larger, more efficient blades and advanced energy conversion systems, 
repowering significantly boosts the energy production of existing turbines. By 
integrating DTs, operators can simulate and predict turbine performance, ensuring 
data-driven decisions that optimize repowering efforts and enhance the economic 
viability of wind farms. Figure 6 illustrates the integrated process of repowering, 
highlighting its potential and challenges. The schematic representation emphasizes 
key strategies such as increasing turbine height, strengthening structural components, 
and implementing advanced control technologies like SCADA and tuning control. It 
also contrasts outdated configurations with modern repowered designs, demonstrating 
how repowering serves as a unified approach to optimizing wind energy capture and 
extending operational lifespan.

Figure 6. Schematic representation of repowering potential, process, and challenges.

For example, in Germany, repowering has been a crucial strategy due to the 
aging wind turbine fleet. Researches indicate that repowering old turbines with 
modern, larger-capacity models significantly enhances energy production. In some 
cases, repowered wind farms have shown an increase in energy output by up to 110% 
compared to their baseline performance in 2021, depending on geographical and 
technological factors [45]. Similarly, in Denmark, repowering efforts have replaced 
aging turbines with more efficient models, leading to an increase in capacity factor 
by close to 10% and a reduction in reactive power consumption [46]. Additionally, 
life cycle assessment (LCA) studies have shown that the environmental benefits of 
repowering outweigh its impacts. The process significantly offsets carbon emissions 
by increasing renewable energy generation. For instance, an LCA study found that the 
carbon footprint of decommissioning old turbines and installing new ones is clearly 
offset by the long-term reduction in emissions due to higher efficiency [47].

Moreover, repowering is often more socially acceptable than constructing 
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new wind farms because it utilizes existing sites, reducing land-use conflicts and 
preserving established grid connections. This strategy aligns with broader national 
energy goals, such as Germany's plan to phase out coal-based electricity by 2038, 
where repowering is expected to play a significant role in maintaining and expanding 
wind energy contributions [45]. Overall, repowering is proving to be a vital tool in 
ensuring the continued viability and expansion of wind energy, balancing economic 
feasibility, environmental benefits, and social acceptance.

2.3.4 Enhancing Structural Resilience
Beyond operational enhancements, DTs facilitate structural optimization by 

enabling data-driven design improvements and real-time structural adaptation. By 
integrating finite element analysis with real-time sensor data, DTs enable engineers 
to refine wind turbine support structures, enhancing their load-bearing efficiency 
and fatigue resistance. For floating offshore wind turbines, DTs assist in optimizing 
mooring configurations, reducing dynamic responses to wave and wind loads, and 
improving platform stability under extreme weather conditions [48]. Moreover, AI-
driven DTs enable automated topology optimization, identifying optimal material 
distributions and geometric configurations to maximize structural resilience while 
minimizing weight and construction costs [49]. Additionally, the integration of remote 
sensing technologies, such as drones and autonomous robots, enhances maintenance 
efficiency by reducing human exposure to hazardous conditions [50].

By integrating machine learning and real-time sensor data, DTs enable dynamic 
adaptation of operational parameters, ensuring optimal wind turbine performance 
under varying environmental conditions. Through continuous monitoring and 
anomaly detection, DT-based systems can identify early signs of component 
degradation, allowing for timely interventions that minimize downtime and extend 
asset lifespan. Furthermore, the incorporation of remote sensing technologies, such as 
drones and autonomous robots, enhances maintenance efficiency by reducing human 
exposure to hazardous conditions. This proactive approach not only improves cost-
effectiveness but also strengthens the resilience and sustainability of wind farms [51].

3. Case Study: Prognostic Digital Twinning of Onshore Wind Turbine 
Towers

In this study, prognostic digital twinning refers to a digital twin paradigm 
that integrates probabilistic load prediction, model updating, and fatigue-damage 
evolution to support forward-looking assessment of structural performance.

3.1 Engineering Background
In order to further illustrate the proposed DT framework, a case study has been 

carried out on an onshore wind turbine with LTH towers, which is regarded as the 
possible next-generation onshore wind turbines in exploring the rich wind resource 
at escalating heights [52]. As illustrated in Figure 7, the tower structure features a 
hub height of 180 meters, consisting of a bottom lattice section (0–82.5 m), a top 
tubular section (87.5–180 m), and a connecting transition piece (82.5–87.5 m). 
Due to commercial confidentiality, the specific parameters of the turbine used in 
this project cannot be disclosed. Nevertheless, according to recent studies, onshore 
hybrid or lattice towers with hub heights around 180 m are typically equipped with 
5.5 MW class turbines [53–55], indicating that the adopted configuration remains 
representative for tall onshore systems. In this work, the NREL 5 MW reference 
turbine [56], a widely validated and openly available benchmark model, is employed 
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for the subsequent analysis to demonstrate the proposed DT methodology. Similar 
practices have also been reported in the literature [52], where standard reference 
models were used as substitutes for confidential industrial configurations to ensure 
research transparency and comparability.

Figure 7. The schematic diagram of the LTH tower.

The deployment site experiences highly variable environmental conditions, 
including fluctuating wind speeds, temperature changes, and seasonal factors. These 
conditions impose significant stresses on the tower structure and its connections. 
Fatigue in bolted ring-flange connections becomes a critical concern, as these 
components are subjected to cyclic loading and environmental exposure, leading to 
potential premature failure. Such challenges highlight the importance of advanced 
monitoring and control systems to assess structural integrity, mitigate fatigue damage, 
and optimize maintenance strategies, ultimately improving the operational reliability 
and lifespan of the turbine.

3.2 Wind Field
Wind speed conditions ranging from 3.4 m/s to 23.4 m/s were examined in 2 m/

s intervals to capture a range of operational scenarios. A representative case with a 
mean wind speed of 11.4 m/s is selected to demonstrate the key modeling parameters. 
Given that the site is located in a region characterized by moderately rough terrain, 
all relevant wind field parameters are adopted from reference [57]. At hub height, the 
mean wind speed follows a power law profile with an exponent of 0.20 and a surface 
roughness length of 0.03 m. The corresponding turbulence intensity reaches 17.377%, 
with a standard deviation of 1.981 m/s. To maintain spatial coherence, the IEC model 
is employed with coherence parameters of (12.0, 0.000353) applied to all velocity 
components. The turbulence length scale is set to 42.0 m, and the integral length 
scale for the longitudinal (u) component is 340.2 m. Figure 8(a) displays the wind 
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speed variation at hub height, while Figure 8(b) presents the spatial and temporal 
distribution of the full wind field. The wind simulation utilizes a 31×31 grid with a 
time resolution of 0.1 seconds, yielding 700 seconds of usable data. To ensure data 
quality, the first 100 seconds, typically affected by transient behaviour, are excluded, 
and the interval from 100 to 700 seconds is retained for further analysis.

			         (a)							               (b)
Figure 8. Wind speed characteristics at hub height and full-field distribution: (a) wind speed at hub height; (b) full-field 

wind speed distribution.

3.3 Data Preparation and DT Model
To demonstrate the feasibility of the proposed DT framework, a comprehensive 

numerical and data-driven workflow is developed for the LTH wind turbine tower. 
The framework integrates aerodynamic simulation, structural response analysis, 
virtual sensing, and model updating into a unified closed-loop information system. 
The goal is to replicate, in a virtual environment, the physical behavior and 
degradation process of the tower under realistic operating conditions, thus enabling 
continuous performance assessment and fatigue damage evaluation (Figure 9).

Figure 9. The DT framework for LTH wind turbine towers.
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3.3.1 Multi-Physics Simulation and Data Synthesis
The DT begins with multi-physics numerical simulation that combines 

OpenFAST and OpenSees to generate synthetic SCADA and SHM data. The 
OpenFAST platform models the aerodynamic, mechanical, and control subsystems 
of the 5 MW reference wind turbine. The tubular section of the tower and the rotor–
nacelle assembly are defined following standard OpenFAST configurations, while 
the lattice section is represented through the SubDyn module, which performs high-
fidelity computation for substructure dynamics.

At each time step, OpenFAST calculates the unsteady aerodynamic loads, rotor 
thrust, torque, and bending moments at the tower base, taking into account stochastic 
turbulent wind inputs derived from site-specific Weibull distributions. These time-
series load components are then transferred to the OpenSees structural model 
via a data-exchange interface developed for sequential coupling. This integrated 
simulation produces artificial datasets that emulate field measurements, including 
tower-top displacement, nacelle acceleration, axial strain, and power output. These 
synthetic SCADA and SHM data serve as the virtual observation layer of the DT, 
providing inputs for both model calibration and subsequent fatigue-damage analysis. 
The approach allows the numerical twin to operate as a proxy for a real turbine, 
maintaining the same data structure and time-synchronization protocol used in 
operational monitoring systems.

3.3.2 Framework Configuration and Data Flow
The DT framework operates through a hybrid sequential-coupling architecture 

between OpenFAST and OpenSees, enabling bidirectional data exchange and 
model synchronization. OpenFAST first computes the aerodynamic and operational 
loads under varying wind speeds, yaw angles, and turbulence intensities. These 
computed loads are then applied as boundary conditions in OpenSees to determine 
the structural response of the LTH tower, including time-varying displacements, 
stresses, and internal forces. The simulation results, together with virtual sensor data, 
are continuously stored in a shared database that serves as the central communication 
hub of the DT. This sequential coupling approach avoids the high computational 
cost of fully coupled aeroelastic simulation while maintaining sufficient accuracy for 
fatigue analysis. To ensure consistency between aerodynamic excitation and structural 
response, stiffness coefficients and modal parameters are periodically updated and 
synchronized between the two platforms. Through this process, the DT framework is 
capable of reconstructing load paths, estimating fatigue-damage evolution.

3.3.3 Virtual Sensing and Monitoring-Data Integration 
To replicate field-level monitoring while maintaining practical efficiency, a 

hybrid virtual–physical sensing configuration is implemented within the simulation 
framework. Instead of dense instrumentation, the strategy relies on multi-modal and 
complementary measurements to achieve full-field observation with limited sensor 
deployment. Real-time kinematic (RTK) [58] receivers are positioned at the tower 
top and transition segment to provide high-accuracy displacement and tilt tracking. 
Accelerometers are distributed along the tower axis to record vibration responses, 
supporting modal identification and dynamic amplification analysis. Strain gauges 
are installed on representative sections of the tubular segment, rather than at bolted 
joint interfaces, to monitor axial and bending strains of the tower wall. These strain 
data, when combined with displacement and acceleration responses, allow indirect 
estimation of sectional bending moments and shear forces.
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The synthetic signals produced by the virtual sensors are merged with SCADA 
records (e.g., rotor speed, pitch angle, power output) to establish a unified multi-
source monitoring dataset. This dataset forms the observation layer of the DT, 
serving for model validation, fatigue-indicator computation, and data-driven 
parameter updating. In addition, the DT framework enables iterative optimization of 
sensor placement, identifying the most informative measurement points to balance 
accuracy and cost. This approach ensures efficient monitoring coverage and lays the 
groundwork for subsequent studies on DT-driven sensor layout optimization currently 
under development by the authors.

3.3.4 Model Updating and Load Prediction
Model updating and short-term load prediction are implemented as core 

functionalities within the proposed AI-driven prognostic digital twinning framework. 
Beyond traditional load reconstruction, this case study employs the Bayesian 
Dynamic Linear Model (BDLM) as a probabilistic machine-learning approach to 
predict key mechanical indicators of the LTH tower, specifically the top bending 
moment and shear force, using the reconstructed load histories as inputs (detailed in 
[59]), as shown in Figure 10. In this model, the state variables describe the evolving 
mechanical responses of the tower, while the observation model statistically relates 
these states to the available monitoring data. Both the state transition and observation 
processes are governed by Gaussian noise assumptions, enabling the BDLM to 
capture temporal correlations and quantify uncertainty in the dynamic system.

Figure 10. The load prediction flowchart.

During operation, predictions are sequentially updated as new monitoring data 
become available through a Kalman-type recursive estimation procedure, which 
continuously refines both the state and its associated uncertainty. Within the DT, the 
BDLM prediction loop is fully integrated with the numerical twin: reconstructed load 
histories provide baseline shear-force and bending-moment profiles; the BDLM then 
generates short-term forecasts with uncertainty bounds; these forecasts are compared 
against the monitoring dataset, and the resulting discrepancies inform parameter 
adjustments in the structural model, such as stiffness and connection flexibility. The 
updated parameters are subsequently synchronized with the OpenSees simulation for 
verification, thereby completing the iterative updating cycle.

By combining BDLM-based probabilistic prediction with data-driven model 
correction, the DT framework achieves continuous refinement of both structural-
state estimation and key model parameters, while explicitly quantifying predictive 
uncertainty. This approach enhances the adaptability and robustness of the DT, 
ensuring reliable tracking of the tower’s mechanical behavior under varying 
operational conditions.
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3.4 Results and Discussion
Figure 11 presents the fatigue assessment results of the bolted ring-flange 

connections in the LTH wind turbine tower. As shown in Figure 11(a), the evaluated 
bolts are located at the interface between the tubular section and the transition 
segment, where axial forces and bending moments induced by wind loading are 
concentrated. Owing to their fatigue-sensitive nature, these bolts are selected as 
representative components for evaluating the proposed DT framework.

Figure 11(b) compares the predicted fatigue damage before and after DT-
based model updating under different survival probabilities (97.7%, 50%, and 
2.3%), representing conservative, median, and lower-bound fatigue life estimates, 
respectively. Prior to model updating, the fatigue damage coefficients exhibit a 
noticeable spread across survival probabilities, indicating sensitivity to uncertainty 
in reconstructed loads and model parameters. After updating, fatigue damage is 
consistently reduced at all probability levels, with the damage factor decreasing 
from 0.727 to 0.713 at the conservative (97.7%) survival level. All predicted damage 
values remain well below the critical threshold of 1.0, confirming a low risk of fatigue 
failure within the evaluated service period.

			            (a)						                (b)
Figure 11. (a) The diagram of bolts; (b) Comparison of fatigue life before and after model update for bolts with 

different survival rates.

Beyond the reduction in fatigue damage, Figure 11(b) provides direct evidence 
of improved robustness in fatigue prediction. Compared with the initial model, the 
updated damage estimates show a narrower spread across survival probabilities, 
indicating reduced variability in predicted fatigue life. This contraction of 
probability-dependent damage reflects the effectiveness of the DT-based updating 
process in mitigating key uncertainty sources, including sensor noise, modelling 
assumptions, and stochastic wind-field variability. In particular, the BDLM accounts 
for observation noise and model uncertainty through probabilistic state estimation, 
while stochastic wind-field simulation and sequential updating enable adaptation to 
fluctuating operating conditions.

From a sensitivity perspective, the reduced separation between fatigue damage 
estimates at different survival probabilities implies that variations in input conditions 
lead to smaller deviations in fatigue prediction after model updating. As a result, 
the proposed DT framework delivers more stable and reliable fatigue assessments 
without the need for a separate deterministic sensitivity analysis. Validated on a 5 
MW onshore wind turbine with an LTH tower, the framework supports robust fatigue 
evaluation of critical bolted connections under uncertain and variable operating 
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conditions, thereby enabling proactive maintenance planning and resilience-oriented 
operation.

4. Discussion

The case study in Section 3 validates the proposed AI-driven prognostic digital 
twinning framework under controlled, simulation-based conditions. By integrating 
probabilistic load prediction, sequential model updating, and fatigue assessment, the 
digital twin demonstrates its capability to provide robust fatigue prognosis for critical 
bolted connections in an LTH wind turbine tower.

It is acknowledged that the current implementation relies on virtual sensors that 
provide synchronized and noise-free monitoring signals. While this assumption is 
appropriate for methodological validation, real-world deployment is challenged by 
sparse and noisy sensing, data heterogeneity, and high computational demand.

To bridge this gap, Figure 12 summarizes the transition from simulation-based 
digital twins to field-deployable implementations by explicitly linking deployment 
challenges, enabling strategies, and practical DT functionalities. As illustrated, 
challenges such as sparse and noisy sensing, data heterogeneity, and computational 
latency can be addressed through optimized sensor layouts, virtual–physical sensing 
fusion, probabilistic modelling, and edge–cloud collaborative computing. These 
strategies support key field-deployable DT capabilities, including online model 
updating, real-time fatigue prognosis, scalable DT networks, and O&M decision 
support.

Figure 12. Transition from simulation-based DTs to field-deployable DTs for wind turbine structures.

Within this context, the probabilistic structure of the proposed framework 
provides a suitable foundation for extending the DT toward real-world applications 
involving uncertain and imperfect monitoring data.

5. Conclusion

• AI-driven DTs represent a promising direction for improving the resilience and 
reliability of wind turbines under extreme environmental conditions. By integrating 
artificial intelligence, SHM, and multi-physics simulation, DTs enable continuous 
condition assessment, predictive maintenance, and adaptive control. The review 
confirms that AI techniques, particularly probabilistic learning and adaptive control, 
provide a solid foundation for resilience-oriented digitalization in wind energy 
systems;

• Building on these insights, this study develops an AI-assisted DT framework 
for LTH wind turbine towers. The framework couples OpenFAST and OpenSees 
for aero-structural simulation, incorporates virtual sensing for data generation, and 
employs the BDLM for probabilistic load prediction and model updating. This 
approach effectively links physical behavior with numerical representation, ensuring 
consistent parameter synchronization and efficient computation;
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• The case study on a 5 MW onshore turbine demonstrates that the proposed DT 
framework can accurately capture dynamic responses and fatigue evolution. After 
model updating, the predicted fatigue damage of bolted connections was notably 
reduced, verifying improved stiffness calibration and reduced uncertainty in load 
estimation. Overall, the framework achieves real-time adaptability and predictive 
capability, supporting proactive maintenance and enhanced structural resilience of 
wind turbine towers;
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