Research on deep learning analysis and optimization of humanoid robot based on Yushu Technology

yingxiao zhang

Article ID: 3735
Vol 6, Issue 3, 2025
DOI: https://doi.org/10.54517/m3735

Download PDF Download PDF Download PDF

Abstract

Humanoid robots, as core carriers of embodied intelligence, rely on their deep learning and behavior prediction capabilities to break through the bottleneck in general-task execution. Taking Unitree as a case study, this research conducts an in-depth analysis of the current technical status, challenges, and optimization paths of humanoid robots in this field. A dynamic environment perception-decision-execution closed-loop system is constructed, encompassing a multimodal perception layer, a hybrid decision-making layer, and a realtime execution layer. It is proposed that hardware iteration must be deeply coordinated with AI algorithms. In terms of model optimization, a multi-task lightweight model architecture is established, which innovatively combines dynamic environment adaptation algorithms with transfer learning mechanisms. Meanwhile, efforts are being made to develop a native multimodal industry-specific large-scale model for robots, exploring the engineering
implementation plan for humanoid robot behavior prediction. Experimental verification not only tests the performance of Unitree’s humanoid robots but also identifies technical bottlenecks such as insufficient chip computing power, lack of industry-specific large-scale models, and dependence on remote control, along with targeted optimization suggestions. Finally, this study looks ahead to the development trends of humanoid robot technology, including breakthroughs in general AI models, the implementation of neuromorphic computing, and aspects of social impact and ethical reconstruction, aiming to promote the development of the humanoid robot industry and expand its applications in diverse scenarios such as industry and households.

Keywords

humanoid robots; multimodal fusion; deep learning; hardware-software co-design; transfer learning; behavior prediction


References

1. Tong Y, Liu H, Zhang Z. Advancements in humanoid robots: A comprehensive review and future prospects. IEEE/CAA

Journal of Automatica Sinica. 2024; 11(2): 301–328. doi: 10.1109/JAS.2023.124140

2. Yang GZ, Bellingham J, Dupont PE, et al. The grand challenges of science robotics. Science Robotics. 2018; 3(14): eaar7650.

doi: 10.1126/scirobotics.aar7650

3. Zhao B, Wu Y, Wu C, Sun R. Deep reinforcement learning trajectory planning for robotic manipulator based on simulation

efficient training. Scientific Reports. 2025; 15(1): 8286. doi: 10.1038/s41598-025-93175-2

4. Liu Y, Liu S, Chen B, et al. Fusion-perception-to-action transformer: Enhancing robotic manipulation with 3-D visual fusion

attention and proprioception. IEEE Transactions on Robotics. 2025; 41: 1553–1567. doi: 10.1109/TRO.2025.3539193

5. Prasad V, Koert D, Stock-Homburg R, et al. MILD: Multimodal interactive latent dynamics for learning human-robot

interaction. In: Proceedings of the 2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids); 28–30

November 2022; Ginowan, Japan. pp. 472–479. doi: 10.1109/Humanoids53995.2022.10000239

6. Chignoli M, Kim D, Stanger-Jones E, Kim S. The MIT humanoid robot: Design, motion planning, and control for acrobatic

behaviors. In: Proceedings of the 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids); 19–21

July 2021; Munich, Germany. pp.1–8. doi: 10.1109/HUMANOIDS47582.2021.9555782

7. Radosavovic I, Xiao T, Zhang B, et al. Real-world humanoid locomotion with reinforcement learning. Science Robotics.

2024; 9(89): eadi9579. doi: 10.1126/scirobotics.adi9579

8. Radosavovic I, Zhang B, Shi B, et al. Humanoid locomotion as next token prediction. In: Proceedings of the 38th

International Conference on Neural Information Processing Systems; 10–15 December 2024; Vancouver, BC, Canada. pp.

79307–79324. doi: 10.5555/3737916.3740434

9. Ren Y, Zhou Z, Xu Z, et al. Enabling versatility and dexterity of the dual-arm manipulators: A general framework toward

universal cooperative manipulation. IEEE Transactions on Robotics. 2024; 40: 2024–2045. doi: 10.1109/TRO.2024.3370048

10. Webster RJ III, Jones BA. Design and kinematic modeling of constant curvature continuum robots: A review. International

Journal of Robotics Research. 2010; 29(13): 1661–1683. doi: 10.1177/0278364910368147

11. Driess D, Xia F, Sajjadi MSM, et al. PaLM-E: An embodied multimodal language model. In: Proceedings of the

40th International Conference on Machine Learning; 23–29 July 2023; Honolulu, Hawaii, USA. pp. 8469–8488. doi:

10.5555/3618408.3618748

12. Xu S, Hu X, Yang R, et al. Transforming machines capable of continuous 3D shape morphing and locking. Nature Machine

Intelligence. 2025; 7: 703–715. doi: 10.1038/s42256-025-01028-4

13. Tao Z, Li X, Feng H, FuY. Design and control of a novel hydraulic-driven humanoid hand. International Journal of Humanoid

16Metaverse 2025, 6(3), 3735.

Robotics. 2024; 21(3): 2350015. doi: 10.1142/S0219843623500159

14. Nadon F, Valencia AJ, Payeur P. Multi-modal sensing and robotic manipulation of non-rigid objects: A survey. Robotics.

2018; 7(4): 74. doi: 10.3390/robotics7040074

15. Zhang X, Liao Z, Ma L, Yao J. Hierarchical multistrategy genetic algorithm for integrated process planning and scheduling.

Journal of Intelligent Manufacturing. 2022; 33(1): 223–246. doi: 10.1007/s10845-020-01659-x

16. Andrade-Ambriz YA, Ledesma S, Ibarra-Manzano MA, et al. Human activity recognition using temporal convolutional

neural network architecture. Expert Systems with Applications. 2022; 191: 116287. doi: 10.1016/j.eswa.2021.116287

17. Lai J, Chen Z, Zhu J, et al. Deep learning based traffic prediction method for digital twin network. Cognitive Computation.

2023; 15(5): 1748–1766. doi: 10.1007/s12559-023-10136-5

18. Shin H. A critical review of robot research and future research opportunities: Adopting a service ecosystem perspective.

International Journal of Contemporary Hospitality Management. 2022; 34(6): 2337–2358. doi: 10.1108/IJCHM-09-2021-1171

19. Qiao-Franco G, Zhu R. China’s artificial intelligence ethics: Policy development in an emergent community of practice.

Journal of Contemporary China. 2022; 33(146): 189–205. doi: 10.1080/10670564.2022.2153016

20. Mazumder A, Sahed MF, Tasneem Z, et al. Towards next generation digital twin in robotics: Trends, scopes, challenges, and

future. Heliyon. 2023; 9(2): e13359. doi: 10.1016/j.heliyon.2023.e13359

21. Balai PS, Sheikh A, Rabha G, et al. Revolutionizing agricultural machinery: The role of AI, IoT, and renewable energy in

enhancing efficiency and sustainability. International Journal of Scientific Research in Science and Technology. 2025; 12(2):

813–830. doi: 10.32628/IJSRST251222626

22. Zhao X, Li N. Multi-dimensional empowerment system for general education curriculum reform from cross-cultural

perspectives. The Educational Review, USA. 2025; 9(6): 568–572. doi: 10.26855/er.2025.06.001

23. Glikson E, Woolley AW. Human trust in artificial intelligence: Review of empirical research. Academy of Management

Annals. 2020; 14(2): 627–660. doi: 10.5465/annals.2018.0057

24. Yang J. Research on the criminal law regulation of crimes caused by out-of-control intelligent robot programs. Law and

Economy. 2024; 3(4): 63–72. doi: 10.56397/LE.2024.04.08

25. Dunleavy P, Margetts H. Data science, artificial intelligence and the third wave of digital era governance. Public Policy and

Administration. 2023; 40(2): 185–214. doi: 10.1177/09520767231198737

26. Zhao W, Yuan Y. Development of intelligent robots in the wave of embodied intelligence. National Science Review. 2025;

12(7): nwaf159. doi: 10.1093/nsr/nwaf159

27. Guerra A, Parisi F, Pi D. Liability for robots I: Legalchallenges. Journal of Institutional Economics. 2022; 18(3): 331–343.

doi: 10.1017/S1744137421000825

28. Bertolini A, Episcopo F. Robots and AI as legal subjects? Disentangling the ontological and functional perspective. Frontiers

in Robotics and AI. 2022; 9: 842213. doi: 10.3389/frobt.2022.842213

29. Chatzimichali A, Harrison R, Chrysostomou D. Toward privacy-sensitive human–robot interaction: Privacy terms and

human–data interaction in the personal robot era. Paladyn, Journal of Behavioral Robotics. 2020; 12(1): 160–174. doi:

10.1515/pjbr-2021-0013

30. de Almeida PGR, dos Santos CD, Farias JS. Artificial intelligence regulation: A framework for governance. Ethics and

Information Technology. 2021; 23(3): 505–525. doi: 10.1007/s10676-021-09593-z

31. Pal A, Restrepo V, Goswami D, Martinez RV. Exploiting mechanical instabilities in soft robotics: Control, sensing, and

actuation. Advanced Materials. 2021; 33(19): 2006939. doi: 10.1002/adma.202006939

32. Chalmers C, Keane T, Boden M, Williams M. Humanoid robots go to school. Education and Information Technologies. 2022;

27(6): 7563–7581. doi: 10.1007/s10639-022-10913-z

33. Zhao Z, Wu Q, Wang J, et al. Exploring embodied intelligence in soft robotics: A review. Biomimetics. 2024; 9(4): 248. doi:

10.3390/biomimetics9040248

34. Turing AM. Computing machinery and intelligence. Mind. 1950; LIX(236): 433–460. doi: 10.1093/mind/LIX.236.433

35. Mueller A. Modern robotics: Mechanics, planning, and control [bookshelf]. IEEE Control Systems Magazine. 2019; 39(6):

100–102. doi: 10.1109/MCS.2019.2937265

Supporting Agencies



Copyright (c) 2025 yingxiao zhang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).