
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.

The (partial) replacement of synthetic polymers with bioplastics is due to increased production of conventional packaging plastics causing for severe environmental pollution with plastics waste. The bioplastics, however, represent complex mixtures of known and unknown (bio)polymers, fillers, plasticizers, stabilizers, flame retardant, pigments, antioxidants, hydrophobic polymers such as poly(lactic acid), polyethylene, polyesters, glycol, or poly(butylene succinate), and little is known of their chemical safety for both the environment and the human health. Polymerization reactions of bioplastics can produce no intentionally added chemicals to the bulk material, which could be toxic, as well. When polymers are used to food packing, then the latter chemicals could also migrate from the polymer to food. This fact compromises the safety for consumers, as well. The scarce data on chemical safety of bioplastics makes a gap in knowledge of their toxicity to humans and environment. Thus, development of exact analytical protocols for determining chemicals of bioplastics in environmental and food samples as well as packing polymers can only provide warrant for reliable conclusive evidence of their safety for both the human health and the environment. The task is compulsory according to legislation Directives valid to environmental protection, food control, and assessment of the risk to human health. The quantitative and structural determination of analytes is primary research task of analysis of polymers. The methods of mass spectrometry are fruitfully used for these purposes. Methodological development of exact analytical mass spectrometric tools for reliable structural analysis of bioplastics only guarantees their safety, efficacy, and quality to both humans and environment. This study, first, highlights innovative stochastic dynamics equations processing exactly mass spectrometric measurands and, thus, producing exact analyte quantification and 3D molecular and electronic structural analyses. There are determined synthetic polymers such as poly(ethylenglycol), poly(propylene glycol), and polyisoprene as well as biopolymers in bags for foodstuffs made from renewable cellulose and starch, and containing, in total within the 20,416–17,495 chemicals per sample of the composite biopolymers. Advantages of complementary employment in mass spectrometric methods and Fourier transform infrared spectroscopy is highlighted. The study utilizes ultra-high resolution electrospray ionization mass spectrometric and Fourier transform infrared spectroscopic data on biodegradable plastics bags for foodstuffs; high accuracy quantum chemical static methods, molecular dynamics; and chemometrics. There is achieved method performance |r| = 0.99981 determining poly(propylene glycol) in bag for foodstuff containing 20,416 species and using stochastic dynamics mass spectrometric formulas. The results highlight their great capability and applicability to the analytical science as well as relevance to both the fundamental research and to the industry.
Comparative evaluation of TPHs standards in the analysis of petroleum-contaminated, and remediated soil
Vol 6, Issue 1, 2025
Download PDF
Abstract
Commercially available Total Petroleum Hydrocarbons (TPHs) standards have been widely used for instrumental analysis of TPHs in soils and other environmental matrices. However, there are concerns about the universality of these standards developed in one region of the world to reliably estimate TPHs in environmental matrices in other regions, which prompted this investigation. TPHs standards were prepared from contaminating crude oils at polluted sites at Tibshelf, UK, and Ogoniland, Niger Delta, Nigeria. The prepared standards were used in comparison with some commercially available TPHs standards (TPHs-gasoline diesel range and TPHs C10-C40) for assessment of TPHs levels in the contaminated soil samples treated for phyto and myco-remediation. Results obtained revealed significant differences in the quantification of TPHs between these standards. The TPHs standards prepared from the contaminating crude oils estimated higher levels of TPHs in the soil samples compared to those of the commercially available standards. In assessing the % of TPHs reduction in the remediation experiment, all the standards provided similar estimations of TPHs reduction, with no significant differences. The result revealed that although all the TPHs standards provided consistent evaluation of TPHs remediation in all cases, the commercially available TPHs standards may underestimate the concentration of TPHs in certain environments during pollution incidents. Therefore, with respect to toxicological evaluations, there is a need for TPHs standards specifically developed for a region of interest to be used. This study offers a good insight on how such standards can be prepared.
Keywords
References
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Author(s)
License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
.jpg)
Beijing University of Technology, China