PHYSICAL-CHEMICAL CONTAMINATION IN FRACKING AREAS

María Eugenia Guerrero Useda

Article ID: 2078
Vol 4, Issue 2, 2023

VIEWS - 282 (Abstract)

Abstract

Despite the scientific consensus on the need to limit global warming, the urgency for the autonomous provision of energy resources has led many States to authorize projects that apply non-conventional fossil fuel extraction techniques, such as horizontal drilling and high-volume hydraulic fracturing of shale. Although few studies present conclusive evidence, these techniques are accused of causing dangers to the environment and to the health of the people who work and live in fracking areas, so that the States are faced with the dilemma of extending their energy autonomy for a few years, squeezing their natural gas and oil reserves to the end, or seeking a balance with the planet by moving towards more sustainable energy sources. Based on the review of studies that present evidence of physical and chemical contamination and other impacts on the environment in areas where the fracking technique has been developed, a panorama of risks for people living near extraction platforms and the dangers of developing fracking projects in tropical climate zones is presented.


Keywords

hazard analysis, hydraulic fracturing, horizontal drilling, risk.

Full Text:

PDF



References

1. Campin, D. (2019). The Unknown Risks of Fracking. Asia Pacific Unconventional Resources Technology Conference, Brisbane.

2. Richburg, C. M. and Slagley, J. (2019). Noise concerns of residents living in close proximity to hydraulic fracturing sites in Southwest Pennsylvania. Public Health Nursing, vol. 36, no. 1, pp. 3- 10.

3. Weinhold, B. (2012). The Future of Fracking: New Rules Target Air Emissions for Cleaner Natural Gas Production. Environmental Health Perspectives, vol. 120, no. 7, pp. 272-279.

4. Cotton, M., Imogen R. and James, V. A. (2014). Shale gas policy in the United Kingdom: An argumentative discourse analysis. Energy Policy, vol. 73, pp. 427-438.

5. Howarth, R. W. (2019). Ideas and perspectives: is shale gas a major driver of recent increase in global atmospheric methane? Biogeosciences, vol. 16, p. 3033-3046.

6. Oyelakin, O. A. (2016). Thermal-swing adsorption to capture and recover toxic vapor emissions from condensate storage tanks (Doctoral dissertation, Texas A&M University- Kingsville).

7. Paulik, L., Hobbiea, K. A., Rohlman, D., Smith, B. W., & Scott, R. (2018). Environmental and individual PAH exposures near rural natural gas extraction. Environmental Pollution, vol. 241, pp. 397-405.

8. Hoyos Botero, C. (2000). Un modelo para investigación documental, Medellín: Señal Editorial.

9. Gómez Vargas, M., Galeano Higuita, C. and Jaramillo Muñoz, D. A. (2015). The state of the art: a research methodology. Revista Colombiana de Ciencias Sociales, vol. 6, nº 2, pp. 423- 442.

10. Guerrero Useda, M. E. (2015). Methodological guide I. Topic review, Bogotá.

11. Enciso, L., Pacheco, D., Rivera D. and Guerrero Useda, M.E. (2014). Analysis of risk factors in brick kiln workers in Ubaté. IIEC, vol. 3, no. 3, pp. 5-10.

12. Bravo Mendoza O. and Sánchez Celís, M. (2012). Gestión integral de riesgos, 4 ed., vol. 1, Bogotá: B&S.

13. Porter, M. (2002). Natural hazard and risk managenent for south american pipelines. 4th International Pipeline Conference, Calgary.

14. Rosa, L. and D'Odorico, P. (2019). The water-energy-food nexus of unconventional oil and gas extraction in the Vaca Muerta Play, Argentina, Journal of cleaner production, vol. 207, pp. 743- 750.

15. Sanchéz Cano, J. E., Barrios D. Á. and Pérez Domínguez, A. D. (2019). Feasibility of using fracking in the exploitation of unconventional petroleum resources in semiarid areas of Mexico. Sustainable development of arid and semi-arid areas in the face of climate change, Durango: Universidad Juárez del Estado de Durango, pp. 74-92.

16. Rosenman, K. D. (July 2014). Hydraulic Fracturing and the Risk of Silicosi, Clinical Pulmonary Medicine, vol. 21, no. 4, pp. 167-172.

17. Soeder, D. J. (2021). Impacts to Human Health and Ecosystems. Fracking and the Environment, Springer, pp. 135-153.

18. Zanganeh, B., Soroush, M., Williams-Kovacs J. D. and Clarkson, C. R. (2015). Parameters Affecting Load Recovery and Oil Breakthrough Time after Hydraulic Fracturing in Tight Oil Wells. Society of Petroleum Engineers.

19. Charry-Ocampo, S. and Perez, A. J. (2018). Effects of hydraulic stimulation (fracking) on water resources: Implications in the Colombian context. Ciencia e Ingenieria Neogranadina, vol. 28, no. 1, pp. 135-164.

20. Maloney, K., Young, J., Faulkner, S., Hailegiorgis, A., Slonecker T.and Milheim, L. E. (2018). A detailed risk assessment of shale gas development on headwater streams in the Pennsylvania portion of the Upper Susquehanna River Basin, U.S.A. Science of The Total Environment, vol. 610, pp. 154-166.

21. Salinas Avellaneda, A. (2015). Environmental health criteria to be taken into account in fracking projects. Revista de Salud Ambiental, vol. 15, nº Especial XIII Congreso Español de Salud Ambiental, pp. 12-64.

22. Arnedo Cárdenas A. E. and Yunes Cañate, K. M. (2015). Fracking: unconventional oil and gas extraction, and its environmental impact. Cartagena.

23. Sherilyn A. Gross, Heather J. Avens, Amber M. Banducci, Jennifer Sahmel, Julie M. Panko & Brooke E. Tvermoes (2013). Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations. Journal of the Air & Waste Management Association, vol. 63, no. 4, pp. 424-32.

24. Vergel, M. and Becerra, L. (2020). Impacts of fracking and a look at the Colombian landscape. Journal of Science and Engineering, vol. 12, no. 1, pp. 264-274. https://doi.org/10.46571/JCI.2020.1.23

25. Guerrero Useda, M. (2018). Pipeline rupture by external interference, environmental damage and sustainability in Colombia. Producción + Limpia, vol. 13, no. 2, pp. 7-13. https://doi.org/10.22507/pml.v13n2a1. https://doi.org/10.22507/pml.v13n2a1

26. Purvis, R. M., Lewis, A. C., Hopkin, J. R. Wilde, S. E. (2019). Effects of 'pre-fracking' operations on ambient air quality at a shale gas exploration site in rural North Yorkshire, England. Science of The Total Environment, vol. 673, pp. 445-454.

27. Howarth, R. W., Ingraffea, A. and Engelder, T. (2011). Should fracking stop? Nature, vol. 477, no. 7364, pp. 271-275.

28. Osborn, S. G., Vengosh, A. N., Warner R. and Jackson, R. B. (2011). Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings of the National Academy of Science, vol. 108, p. 8172-8176.

29. Guo, M., Xu, Y. and Yongqin, D. C. (2014). Fracking and Pollution: Can China Rescue Its Environment In Time? Environmental Science & Technology, vol. 48, no. 2, pp. 891-892.

30. Molofsky, L. J., Connor, J. A., Wylie, A. S., Wagner, T. and Farhat, S. K. (2013). Evaluation of Methane Sources in Groundwater in Northeastern Pennsylvania. Groundwater, vol. 51, no. 3, pp. 333-349.

31. Moritz, A., Helie, J.F., Pinti, D. L., Larocque, M. and Barnetche, D. (2015). Methane Baseline Concentrations and Sources in Shallow Aquifers from the Shale Gas-Prone Region of the St. Lawrence Lowlands (Quebec, Canada). Environmental Science & Technology, vol. 49, no. 7, pp. 4765-4771.

32. Burkhart, J., Huber T., and Bolling, G. (2013). Potential Radon release during Fracking in Colorado. The American Association of Radon Scientists and Technologists. Spingfield, IL, 20- 27 Radon Symposiun Pape, Spingfield.

33. Carpenter, D. (2016). Hydraulic fracturing for natural gas: impact on health and environment. Reviews on Environmental Health, vol. 31, no. 1, pp. 47-51.

34. Bandreddy, N. A. (2019). Defining Correlation Between Radon, Uranium Deposits, and Oil and Gas Wells Using GIS Regression Methods (Doctoral dissertation, University of Toledo).

35. Leusch, F. and Bartkow, M. (2010). A short primer on benzene, toluene, ethylbenzene and xylenes. Griffith University.

36. Queensland Government (2018). Information sheet Petroleum and Gas. Fraccing and BTEX, 17 May.

37. Srebotnjak, T. and Rotkin-Ellman, M. (December 2014). Fracking Fumes: Air Pollution from Hydraulic Fracturing Threatens Public Health and Communities. NRDC Issue BRIEF, pp. 1-12.

38. Esswein, E. J., Breitenstein, M., Snawder, J., Kiefer, M. and Sieber, W. K. (2013). Occupational Exposures to Respirable Crystalline Silica During Hydraulic Fracturing. Journal of Occupational and Environmental Hygiene, vol. 10, no. 7.

39. Hays, J., McCawley, M. and Shonkoff, S. (2017). 'Public health implications of environmental noise associated with unconventional oil and gas development' Science of The Total Environment, vol. 580, pp. 448-456.

40. Assessing Environmental Impacts of Horizontal Gas Well Drilling Operations (2013). Air, Noise, and Light Monitoring Results" Charleston.

41. Todd, S. W., Hoffman, M. T., Henschel, J. R., Cardoso, A. W., Brooks, M., & Underhill, L. G. (2016). The potential impacts of fracking on biodiversity of the Karoo Basin, South Africa. Hydraulic Fracturing in the Karoo: Critical Legal and Environmental Perspectives. Juta & Company (Pty) Ltd, Cape Town, 278-301.

42. Habicht, S., Hanson, L., & Faeth, P. (2015). The potential environmental impact from fracking in the Delaware River basin. CNA Analysis and Solutions, Arlington, Virginia, USA.

43. Werner, A. K., Vink, S., Watt, K., & Jagals, P. (2015). Environmental health impacts of unconventional natural gas development: a review of the current strength of evidence. Science of the Total Environment, 505, 1127-1141.

44. López Suárez, A. (May 10, 2020). Precios y pandemia le quitarían reservas de petróleo a la Nación. PORTAFOLIO. https://www.portafolio.co/economia/precios-y-pandemia-le-quitarian- reservas-de-petroleo-a-la-nacion-540681.

45. Goldstein, B. D., Brooks, B. W., Cohen, S. D., Gates, A. E., Honeycutt, M. E., Morris, J. B., ... & Snawder, J. (2014). The role of toxicological science in meeting the challenges and opportunities of hydraulic fracturing. Toxicological Sciences, 139(2), 271-283.

46. Witter, R. Z., Tenney, L., Clark, S., & Newman, L. S. (2014). Occupational exposures in the oil and gas extraction industry: State of the science and research recommendations. American journal of industrial medicine, 57(7), 847-856.

47. Resnikoff, M. (2011). Radon in natural gas from Marcellus Shale. Ethics in Biology, Engineering and Medicine: An International Journal, vol. 2, no. 1, pp. 317-331.

48. Tian, W., Wu, X., Liu, D., Knaup, A., Chen, C., & Sondergeld, C. (2019). Investigating Effects of Pore Size Distribution and Pore Shape on Radon Production in Marcellus Shale Gas Formation. Energy & Fuels, 33(2), 700-707. https://doi.org/10.1021/acs.energyfuels.8b03311.

49. Boyle, M. D., Soneja, S., Quirós-Alcalá, L., Dalemarre, L., Sapkota, A. R., Sangaramoorthy, T., & Sapkota, A. (2017). A pilot study to assess residential noise exposure near natural gas compressor stations. PLoS One, 12(4), e0174310.

50. Lee, A. T., Geary, C., Wright, D. R., & Dean, W. R. J. (2019). Vulnerability of birds to contaminated water sources in the Karoo region of South Africa. Ostrich, 90(4), 397-406. https://doi.org/10.2989/00306525.2019.1638846.

51. Rodríguez Barajas, Y. C. (6 May 2019). Controversy as fracking in Colombia regained momentum. Vanguardia.

52. De Luna Uribe, A. G. (2018). Ecology, population densities and conservation status of the primates of the Colombian Magdalena Medio with emphasis on one of the primates most threatened with extinction in the world, the brown spider monkey (Ateles hybridus) (Thesis of the Complutense University of Madrid).

53. Solano Naranjo, D. (2020). Development of El Llanito: a construction from the community, Bogotá. (Doctoral dissertation, Universidad de los Andes). http://hdl.handle.net/1992/43738

54. Guo, M., Xu, Y., & Chen, Y. D. (2019). Environmental enforcement and compliance in Pennsylvania's Marcellus shale gas development. Resources, Conservation and Recycling, 144, 24-31. https://doi.org/10.1016/j.resconrec.2019.01.006.

55. Navarro, M. (30 April 1994). El Magdalena Medio: motor of the country. El Tiempo.

Refbacks

  • There are currently no refbacks.