
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.

The (partial) replacement of synthetic polymers with bioplastics is due to increased production of conventional packaging plastics causing for severe environmental pollution with plastics waste. The bioplastics, however, represent complex mixtures of known and unknown (bio)polymers, fillers, plasticizers, stabilizers, flame retardant, pigments, antioxidants, hydrophobic polymers such as poly(lactic acid), polyethylene, polyesters, glycol, or poly(butylene succinate), and little is known of their chemical safety for both the environment and the human health. Polymerization reactions of bioplastics can produce no intentionally added chemicals to the bulk material, which could be toxic, as well. When polymers are used to food packing, then the latter chemicals could also migrate from the polymer to food. This fact compromises the safety for consumers, as well. The scarce data on chemical safety of bioplastics makes a gap in knowledge of their toxicity to humans and environment. Thus, development of exact analytical protocols for determining chemicals of bioplastics in environmental and food samples as well as packing polymers can only provide warrant for reliable conclusive evidence of their safety for both the human health and the environment. The task is compulsory according to legislation Directives valid to environmental protection, food control, and assessment of the risk to human health. The quantitative and structural determination of analytes is primary research task of analysis of polymers. The methods of mass spectrometry are fruitfully used for these purposes. Methodological development of exact analytical mass spectrometric tools for reliable structural analysis of bioplastics only guarantees their safety, efficacy, and quality to both humans and environment. This study, first, highlights innovative stochastic dynamics equations processing exactly mass spectrometric measurands and, thus, producing exact analyte quantification and 3D molecular and electronic structural analyses. There are determined synthetic polymers such as poly(ethylenglycol), poly(propylene glycol), and polyisoprene as well as biopolymers in bags for foodstuffs made from renewable cellulose and starch, and containing, in total within the 20,416–17,495 chemicals per sample of the composite biopolymers. Advantages of complementary employment in mass spectrometric methods and Fourier transform infrared spectroscopy is highlighted. The study utilizes ultra-high resolution electrospray ionization mass spectrometric and Fourier transform infrared spectroscopic data on biodegradable plastics bags for foodstuffs; high accuracy quantum chemical static methods, molecular dynamics; and chemometrics. There is achieved method performance |r| = 0.99981 determining poly(propylene glycol) in bag for foodstuff containing 20,416 species and using stochastic dynamics mass spectrometric formulas. The results highlight their great capability and applicability to the analytical science as well as relevance to both the fundamental research and to the industry.
Recovering of soil contaminated by hydrocarbons mixing
Vol 4, Issue 2, 2023
Download PDF
Abstract
In Mexico, an agricultural soil poor in nitrogen (N) contaminated by a hydrocarbon derivative such as automotive residual oil (ARA), with a relatively high concentration of 100,000 ppm, is an environmental problem, but also because it drastically affects soil properties associated with the mineralization of organic matter and loss of fertility, since it exceeds the maximum accepted limit of 4400 ppm of the Mexican standard called, NOM-138-SEMARNAT-2012 (NOM-138). An alternative solution is to treat it with ecological actions to eliminate the ARA and recover fertility. Therefore, the objectives of this research were: i) bioremediation of soil contaminated by 100,000 ppm of ARA ii) phytoremediation using Sorghum vulgare with Aspergillus inger and Penicillium chrysogenum to decrease ARA to a value below 4400 ppm of NOM-138. For this purpose, soil recovery was performed using the variable-response: disappearance of ARA by Soxhlet at the beginning and after bioremediation and at the end of phytoremediation with S. vulgare with phenology and biomass to seedling. All experimental data were validated by ANOVA/Tukey HSD P < 0.05%. The results indicated that bioremediation and phytoremediation of soil contaminated by 100,000 ppm of ARA, decreased it to 3400 ppm, a value lower than the maximum established by NOM-138, sufficient for soil recovery in agricultural production, in 120 days, a relatively short period of time.
Keywords
References
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Juna Manuel Sánchez-Yáñez
License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
.jpg)
Beijing University of Technology, China