
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.

The (partial) replacement of synthetic polymers with bioplastics is due to increased production of conventional packaging plastics causing for severe environmental pollution with plastics waste. The bioplastics, however, represent complex mixtures of known and unknown (bio)polymers, fillers, plasticizers, stabilizers, flame retardant, pigments, antioxidants, hydrophobic polymers such as poly(lactic acid), polyethylene, polyesters, glycol, or poly(butylene succinate), and little is known of their chemical safety for both the environment and the human health. Polymerization reactions of bioplastics can produce no intentionally added chemicals to the bulk material, which could be toxic, as well. When polymers are used to food packing, then the latter chemicals could also migrate from the polymer to food. This fact compromises the safety for consumers, as well. The scarce data on chemical safety of bioplastics makes a gap in knowledge of their toxicity to humans and environment. Thus, development of exact analytical protocols for determining chemicals of bioplastics in environmental and food samples as well as packing polymers can only provide warrant for reliable conclusive evidence of their safety for both the human health and the environment. The task is compulsory according to legislation Directives valid to environmental protection, food control, and assessment of the risk to human health. The quantitative and structural determination of analytes is primary research task of analysis of polymers. The methods of mass spectrometry are fruitfully used for these purposes. Methodological development of exact analytical mass spectrometric tools for reliable structural analysis of bioplastics only guarantees their safety, efficacy, and quality to both humans and environment. This study, first, highlights innovative stochastic dynamics equations processing exactly mass spectrometric measurands and, thus, producing exact analyte quantification and 3D molecular and electronic structural analyses. There are determined synthetic polymers such as poly(ethylenglycol), poly(propylene glycol), and polyisoprene as well as biopolymers in bags for foodstuffs made from renewable cellulose and starch, and containing, in total within the 20,416–17,495 chemicals per sample of the composite biopolymers. Advantages of complementary employment in mass spectrometric methods and Fourier transform infrared spectroscopy is highlighted. The study utilizes ultra-high resolution electrospray ionization mass spectrometric and Fourier transform infrared spectroscopic data on biodegradable plastics bags for foodstuffs; high accuracy quantum chemical static methods, molecular dynamics; and chemometrics. There is achieved method performance |r| = 0.99981 determining poly(propylene glycol) in bag for foodstuff containing 20,416 species and using stochastic dynamics mass spectrometric formulas. The results highlight their great capability and applicability to the analytical science as well as relevance to both the fundamental research and to the industry.
The present state of lead (Pb) and zinc (Zn) contamination in agricultural soil as revealed by meta-analytic findings
Vol 4, Issue 2, 2023
Download PDF
Abstract
Agricultural soil serves as the fundamental resource for grain production, with its quality being integral to both the national economy and the well-being of the population. As economic and societal development progresses, the levels of lead (Pb) and zinc (Zn) in farmland soil are on the rise. Currently, research into the total quantities and speciation distribution of Pb and Zn in agricultural soil, as well as their influencing factors, is fragmented, and there is a gap in comprehensive understanding regarding the transformation mechanisms and pollution status of various forms of these heavy metals. To gain a clearer picture of the heavy metal pollution in soil, as well as the distribution and transformation dynamics of different forms, this study conducts an integrated analysis of the pollution levels, speciation distribution, and influencing factors of Pb and Zn in Chinese farmland soil. Additionally, it assesses the ecological risk of heavy metals using principal component analysis and the geoaccumulation index. The findings indicate that the average concentrations of Pb and Zn are 4045 mg/kg and 10699 mg/kg, respectively. The residual form of Pb is most predominant in the Northwest, while the exchangeable form is most prevalent in the Southwest. The residual form of Zn constitutes over 50% of its presence. The analysis reveals that pH is the primary factor influencing the speciation distribution of heavy metals. The combined results of the geoaccumulation index and the potential ecological risk index (RI) suggest that Pb levels at the study site exceed those of Zn, though both are classified as posing a slight risk. A holistic analysis of soil environmental factors reveals that the speciation distribution of heavy metals reaches an equilibrium state through the interaction of multiple factors.
Keywords
References
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Yinzhong Ning
License URL: https://creativecommons.org/licenses/by/4.0

This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
.jpg)
Beijing University of Technology, China