Rhizobacteria promoting plant growth as a biofertilization substitute in sustainable agriculture
Vol 4, Issue 1, 2023
VIEWS - 2051 (Abstract)
Download PDF
Abstract
In order to maximize agricultural yields and reduce environmental effect, modern agriculture must overcome new obstacles in the integration of ecological and molecular approaches. Synthetic fertilizer doses per unit area have been greatly raised to produce larger yields, but this has resulted in pollution, health problems, and a loss of soil fertility, making it one of the biggest issues in agricultural production. Research has focused on developing new biotechnologies to increase production without the use of synthetic fertilizers, which has sparked interest in beneficial soil microorganisms that can encourage plant growth and, in certain situations, guard against pathogen infections of plant tissue. Plant growth-promoting rhizobacteria (PGPR) have intricate interactions with the biotic environment of microorganisms and plants, and they use many methods of action to support plant growth. These methods fall into three categories: 1) phytostimulation; 2) biocontrol; and 3) biofertilization. When crops are injected with PGRP, it significantly lowers the usage of synthetic fertilizers and their detrimental effects on the soil, boosts crop yields, and benefits the economy of the producer as well as the supply of food for the general public. The advantages that CVPGRs provide to agricultural activities are the main topic of this review, which also covers the fundamental elements of the relationship between CVPGRs and plant species.
Keywords
References
1. Nehra V, Saharan BS, Choudhary M. Evaluation of brevibacillus brevis as a potential plant growth promoting rhizobacteria for cotton (gossypium hirsutum) crop. SpringerPlus 2016; 5(1). doi: 10.1186/s40064-016-2584-8
2. Naqqash T, Hameed S, Imran A, et al. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Frontiers in Plant Science 2016; 7. doi: 10.3389/fpls.2016.00144
3. Food and Agriculture Organization of the United Nations. World fertilizer trends and outlook to 2018. Available online: https://www.fao.org/3/i4324e/i4324e.pdf (accessed on 18 December 2020).
4. Zahid M, Abbasi MK, Hameed S, et al. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Frontiers in Microbiology 2015; 6. doi: 10.3389/fmicb.2015.00207
5. Vejan P, Abdullah R, Khadiran T, et al. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 2016; 21(5): 573. doi: 10.3390/molecules21050573
6. Labra-Cardon D, Guerrero-Zúñiga LA, Rodríguez-Tovar AV, et al. Growth response and tolerance to heavy metals of cyperus elegans and echinochloa polystachya inoculated with a rhizobacteria isolated from soil polluted with petroleum derived hydrocarbons. Revista Internacional de Contaminación Ambiental 2012; 28(1): 7–16.
7. Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends in Plant Science 2012; 17(8): 478–486. doi: 10.1016/ j.tplants.2012.04.001
8. Jha CK, Saraf M. Plant growth promoting rhizobacteria (PGPR): A review. Journal of Agricultural Research and Development 2015; 5(2): 108–119. doi: 10.13140/RG.2.1.5171.2164
9. Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science 2014; 26(1): 1–20. doi: 10.1016/j.jksus.2013.05.001
10. Aguado-Santacruz GA, Moreno-Gómez B, Jiménez-Francisco B, et al. Impact of microbial siderophores and phytosiderophores on iron assimilation by plants: A synthesis (Spanish). Revista Fitotecnia Mexicana 2012; 35(1): 9. doi: 10.35196/rfm.2012.1.9
11. Parray JA, Jan S, Kamili AN, et al. Current perspectives on plant growth-promoting rhizobacteria. Journal of Plant Growth Regulation 2016; 35(3): 877–902. doi: 10.1007/s00344-016-9583-4
12. Gómez-Luna BE, Hernández-Morales A, Herrera-Méndez CH, et al. Isolation of plant growth promoting rhizobacteria of guava plants (Psidium guajava) (Spanish). Available online: http://uaim.edu.mx/webraximhai/Ej-25aarticulosPDF/10.-AISLAMIENTO%20DE%20BACTERIAS%20PROMOTORAS-Blanca_Alejandro_Carlos_Gabriela_Lorena_Victor.pdf (accessed on 13 November 2020).
13. Esquivel-Cote R, Gavilanes-Ruiz M, Cruz-Ortega R, et al. Agrobiotechnological importance of the acc deaminase enzyme in rhizobacteria, a review (Spanish). Revista Fitotecnia Mexicana 2013; 36(3): 251. doi: 10.35196/rfm.2013.3.251
14. Xu XM, Jeffries P, Pautasso M, et al. A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens. Phytopathology® 2011; 101(9): 1032–1044. doi: 10.1094/phyto-10-10-0267
15. Pac ocirc me AN, Nad egrave ge A egrave A, Farid BM, et al. Plant growth promoting rhizobacteria: Beneficial effects for healthy and sustainable agriculture. African Journal of Biotechnology 2016; 15(27): 1452–1463. doi: 10.5897/ajb2016.15397
16. Nihorimbere V, Ongena M, Smargiassi M, Thonart P. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnologie, Agronomie, Société et Environnement 2011; 15(2): 327–337.
17. Zhou H, Luo C, Fang X, et al. Loss of GltB inhibits biofilm formation and biocontrol efficiency of bacillus subtilis Bs916 by altering the production of γ-polyglutamate and three lipopeptides. PLoS One 2016; 11(5): e0156247. doi: 10.1371/journal.pone.0156247
18. Mahmood A, Turgay OC, Farooq M, et al. Seed biopriming with plant growth promoting rhizobacteria: A review. FEMS Microbiology Ecology 2016; 92(8): fiw112. doi: 10.1093/femsec/fiw112
19. Adriano AM. Gálvez RJ, Ramos GH, et al. Biofertilization of organic coffee in nursery stage in Chiapas, Mexico. Mexican Journal of Agricultural Sciences 2011; 2(3): 417–431.
20. Guerra GA, Betancourth CA, Salazar CE. Antagonism of Pseudomonas fluorescens Migula versus Fusarium oxysporum fsp. pisi Schtdl en arveja Pea sativum L. (Latin). Revista UDCA Actualidad & Divulgación Científica 2011; 14(2): 33–42. doi: 10.31910/rudca.v14.n2.2011.773
21. Chailleux A, Mohl EK, Teixeira Alves M, et al. Natural enemy‐mediated indirect interactions among prey species: Potential for enhancing biocontrol services in agroecosystems. Pest Management Science 2014; 70(12): 1769–1779. doi: 10.1002/ps.3916
22. Bhardwaj D, Ansari MW, Sahoo RK, et al. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 2014; 13(1). doi: 10.1186/1475-2859-13-66
23. Cotler H, Martínez M, Etchevers JD. Organic carbon in agricultural soils of Mexico: Research and public policy. Terra Latinoamericana 2016; 34(1): 125–138.
24. Barroso FL, Abad MM, Rodríguez HP, Jerez ME. Application of fitomas-e and ecomic® for the reduction of mineral fertilizer consumption in the production of coffee seedlings. Tropical Crops 2015; 36(4): 158–167.
25. Armenta-Bojórquez AD, García-Gutiérrez C, Camacho-Báez JR, et al. Biofertilizers in the agricultural development of Mexico (Spanish). Ra Ximhai 2010; 6(1): 51–56.
26. Grageda-Cabrera OA, Díaz-Franco A, Peña-Cabriales JJ, Vera-Nuñez JA. Impact of biofertilizers on agriculture (Spanish). Mexican Journal of Agricultural Sciences 2012; 3(6): 1261–1274.
27. Mishra P, Dash D. Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience 2014; 11: 41–61.
28. Acuña AJ, Pucci GN, Pucci OH. Characterization of three bacterial strains capable of fixing nitrogen and biodegrading hydrocarbons-isolated from a patagonian soil. Ecosystems 2010; 19(2): 125–136.
29. Venieraki A, Dimou M, Pergalis P, et al. The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microbial Ecology 2010; 61(2): 277–285. doi: 10.1007/s00248-010-9747-x
30. Lopez Perez JP, Boronat Gil R. Key aspects to atmospheric nitrogen fixation by bacteria. A study in the compulsory secondary education laboratory. Revista Eureka Sobre Ensenanza y Divulgacion de las Ciencias 2016; 13(1): 203–209. doi: 10.25267/Rev_Eureka_ensen_divulg_cienc.2016.v13.i1.15
31. Pazos M, Hernández A, Paneque M, Santander JL. Characterization of samples of the genus azospirillum collected from two types of soil in the locality of San Nicolás de Bari. Cultivos Tropicales 2000; 21(3): 19–23.
32. Vazallo SN, Ramírez LT, Carranza LT, et al. Effect of Rhizobium etli and Trichoderma viride inoculation on aerial and root growth of Capsicum annum var. Longum (Spanish). Revista Rebiolest 2013; 1(1): 11–21.
33. Beltrán Pineda ME. Phosphate solubilization as a microbial strategy to promote plant growth (Spanish). Ciencia y Tecnología Agropecuaria 2014; 15(1): 101–113.
34. Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture 2016; 2(1). doi: 10.1080/23311932.2015.1127500
35. Paredes-Mendoza M, Espinosa-Victoria D. Organic acids produced by phosphate solubilizing rhizobacteria: A critical review. Terra Latinoamericana 2010; 28(1): 61–70.
36. Faria DC, Dias ACF, Melo IS, et al. Endophytic bacteria isolated from orchid and their potential to promote plant growth. World Journal of Microbiology and Biotechnology 2012; 29(2): 217–221. doi: 10.1007/s11274-012-1173-4
37. Muhammad T, Sarwar MA. Plant growth promoting rhizobacteria (PGPR): A budding complement of synthetic fertilizers for improving crop production. Pakistan Journal of Life and Social Sciences 2013; 11(1): 1–7.
38. Saha R, Saha N, Donofrio RS, et al. Microbial siderophores: A mini review. Journal of Basic Microbiology 2012; 53(4): 303–317. doi: 10.1002/jobm.201100552
39. de los Santos-Villalobos S, Barrera-Galicia GC, Miranda-Salcedo MA, et al. Burkholderia cepacia XXVI siderophore with biocontrol capacity against colletotrichum gloeosporioides. World Journal of Microbiology and Biotechnology 2012; 28(8): 2615–2623. doi: 10.1007/s11274-012-1071-9
40. Tejera-Hernández B, Rojas-Badía MM, Heydrich-Pérez M. Potential of the bacillus genus in promoting plant growth and biological control of phytopathogenic fungi (Spanish). Revista CENIC Ciencias Biológicas 2011; 42(3): 131–138.
41. Rives N, Acebo Y, Hernández A. Plant growth promoting bacteria in rice (Oryza sativa L.). Perspectives of its application in Cuba. Cultivos Tropicales 2007; 28(2): 29–38.
42. Ahmed E, Holmström SJM. Siderophores in environmental research: Roles and applications. Microbial Biotechnology 2014; 7(3): 196–208. doi: 10.1111/1751-7915.12117
43. Sayyed RZ, Patel PR. Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas aeruginosa RZS3 vis-a-vis organophosphorus fungicide. Indian Journal of Microbiology 2011; 51: 266–272. doi:10.1007/ s12088-011-0170-x
44. Solanki MK, Singh RK, Srivastava S, et al. Isolation and characterization of siderophore producing antagonistic rhizobacteria against rhizoctonia solani. Journal of Basic Microbiology. 2013; 54(6): 585–597. doi: 10.1002/jobm.201200564
45. Fuentes Á, Carreño C, Llanos C. Yield emulsifiers exopolysaccharides produced by native halophilic bacteria concentrations molasses three Saccharum officinarum L. “sugarcane” (Spanish). Scientia Agropecuaria 2013; 4: 111–120. doi: 10.17268/sci.agropecu.2013.02.04
46. Nadeem SM, Ahmad M, Naveed M, et al. Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Archives of Microbiology 2016; 198(4): 379–387. doi: 10.1007/s00203-016-1197-5
47. Molina-Romero D, Bustillos-Cristales MD, Rodríguez-Andrade O, et al. Mechanisms of phytostimulation by rhizobacteria, isolates in America and biotechnological potential (Spanish). Biológicas 2015; 17(2): 24–34.
48. Sarma RK, Saikia R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant and Soil 2013; 377(1–2): 111–126. doi: 10.1007/s11104-013-1981-9
49. Raza W, Wang J, Wu Y, et al. Effects of volatile organic compounds produced by bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen ralstonia solanacearum. Applied Microbiology and Biotechnology 2016; 100(17): 7639–7650. doi: 10.1007/s00253-016-7584-7
50. Lakshmi V, Kumari S, Singh A, Prabha C. Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. Journal of King Saud University-Science 2015; 27(2): 113–119. doi:10.101 6/j.jksus.2014.04.007
51. Tomada S, Puopolo G, Perazzolli M, et al. Pea broth enhances the biocontrol efficacy of lysobacter capsici AZ78 by triggering cell motility associated with biogenesis of type IV pilus. Frontiers in Microbiology 2016; 7. doi: 10.3389/fmicb.2016.01136
52. Cray JA, Connor MC, Stevenson A, et al. Biocontrol agents promote growth of potato pathogens, depending on environmental conditions. Microbial Biotechnology 2016; 9(3): 330–354. doi: 10.1111/1751-7915.12349
53. Kong HG, Kim NH, Lee SY, et al. Impact of a recombinant biocontrol bacterium, Pseudomonas fluorescens pc78, on microbial community in tomato rhizosphere. The Plant Pathology Journal 2016; 32(2): 136–144. doi: 10.5423/ppj.oa.08.2015.0172
54. Gopalakrishnan S, Upadhyaya H, Vadlamudi S, et al. Plant growth-promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. SpringerPlus 2012; 1(1). doi: 10.1186/2193-1801-1-71
55. Saraf M, Pandya U, Thakkar A. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological Research 2014; 169(1): 18–29. doi: 10.1016/j.micres.2013.08.009
56. Raaijmakers JM, Mazzola M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology 2012; 50(1): 403–424. doi: 10.1146/annurev-phyto-081211-172908
57. Beneduzi A, Ambrosini A, Passaglia LMP. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology 2012; 35(4 suppl 1): 1044–1051. doi: 10.1590/s1415-47572012000600020
58. Upadhyay A, Srivastava S. Phenazine-1-carboxylic acid is a more important contributor to biocontrol fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiological Research 2011; 166(4): 323–335. doi: 10.1016/ j.micres.2010.06.001
59. Figueroa-López AM, Cordero-Ramírez JD, Martínez-Álvarez JC, et al. Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. SpringerPlus 2016; 5(1): 330. doi:10.1186/s40064- 016-1780-x
60. Jiménez-Islas D, Medina SAM, Gracida Rodríguez JN. Properties, applications and production of bio-surfactants (Spanish). International Journal of Environmental Pollution 2010; 26(1): 65–84.
61. Barahona E, Navazo A, Martínez-Granero F, et al. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Applied and Environmental Microbiology 2011; 77(15): 5412–5419. doi: 10.1128/aem.00320-11
62. Rios Velasco C, Caro Cisneros JM, Berlanga Reyes DI, et al. Identification and antagonistic activity in vitro of Bacillus spp. and Trichoderma spp. isolates against common phytopathogenic fungi. Revista Mexicana de Fitopatología 2016; 34(1): 85–99. doi:1 0.18781 /r.mex.fit.1507-1
63. Saharan BS, Nehra V. Plant growth promoting rhizobacteria: A critical review. Life Sciences and Medicine Research 2011; 21(1): 1–30.
64. Gómez DE, Reis EM. Abiotic resistance inducers against phytopathogens (Spanish). Química Viva 2011; 10(1): 6–17.
65. Canchignia Martínez F, Barrera Álvarez AE, Canchignia Malagón G, et al. Application of plant growth-promoting rhizobacteria (PGPR) of the genus Pseudomonas spp. as biological controllers of insects and nematode-pests (Spanish). Ciencia y Tecnología 2015; 8(1): 25. doi: 10.18779/cyt.v8i1.197
66. Diaz-puentes LN. Systemic acquired resistance induced by salicylic acid. Biotecnología en el Sector Agropecuario y Agroindustrial 2012; 10(2): 257–267.
67. Camarena-Gutiérrez G, Torre-Almaráz RD. Systemic acquired resistance in plant: State of art (Spanish). Revista Chapingo Serie Ciencias Forestales y del Ambiente 2007; 13(2): 157–162.
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Alejandro Moreno Reséndez, Verónica García Mendoza, José Luis Reyes Carrillo, Jesús Vásquez Arroyo, Pedro Cano Ríos
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Prof. Zhengjun Qiu
Zhejiang University, China
Cheng Sun
Academician of World Academy of Productivity Science; Executive Chairman, World Confederation of Productivity Science China Chapter, China
Indexing & Archiving
Modern agricultural technology is evolving rapidly, with scientists collaborating with leading agricultural enterprises to develop intelligent management practices. These practices utilize advanced systems that provide tailored fertilization and treatment options for large-scale land management.
This journal values human initiative and intelligence, and the employment of AI technologies to write papers that replace the human mind is expressly prohibited. When there is a suspicious submission that uses AI tools to quickly piece together and generate research results, the editorial board of the journal will reject the article, and all journals under the publisher's umbrella will prohibit all authors from submitting their articles.
Readers and authors are asked to exercise caution and strictly adhere to the journal's policy regarding the usage of Artificial Intelligence Generated Content (AIGC) tools.
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.