
Fine-tuned large language models into traditional back-end web architectures
Vol 3, Issue 1, 2025
Download PDF
Abstract
Integrating Large Language Models (LLMs) into traditional back-end systems can significantly reduce development overhead and enhance flexibility. This paper presents a novel approach using a fine-tuned LLama3 model as a modular back-end component capable of processing JSON-formatted inputs and outputs. We developed a specialized dataset through advanced prompt engineering with the Phi-3.5 model and fine-tuned LLama3 using Quantized Low-Rank Adaptation (QLoRA) on a single NVIDIA T4 GPU. An API layer was designed to facilitate seamless communication between clients and the LLM, effectively replacing conventional application logic. Our fine-tuned model achieved an average accuracy of 76.5¥% and a response time of 3.56 s across 100 test cases, demonstrating its effectiveness in handling back-end tasks. This work underscores the potential of LLMs to transform AI-driven back-end architectures, offering scalable and efficient solutions for modern web services.
Keywords
References
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Author(s)
License URL: https://creativecommons.org/licenses/by/4.0/

Prof. Maode Ma
Qatar University, Qatar
The field of computer and telecommunications engineering is rapidly advancing, with the following being some of the latest developments.
more
We are pleased to congratulate the first anniversiry of the journal of Computer and Telecommunication Engineering (CTE).
more
Owing to the tireless dedication of the editor-in-chief, editorial board members, and the in-house editorial team, we are proud to announce the successful online launch of the first issue of Computer and Telecommunication Engineering.
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.