
Computer and Telecommunication Engineering 2025, 3(1), 3168. 

https://doi.org/10.54517/cte3168 

1 

Article 

Fine-tuned large language models into traditional back-end web 

architectures 

Bowen Li1, Chuan Zhang2,* 

1 School of Computing Technologies, Royal Melbourne Institue of Technology, Melbourne 3001, Australia 
2 Wanghaiyiyuan 2-12D, Shenzhen 518000, China 

* Corresponding author: Chuan Zhang, chuan.z@hotmail.com 

Abstract: Integrating Large Language Models (LLMs) into traditional back-end systems can 

significantly reduce development overhead and enhance flexibility. This paper presents a 

novel approach using a fine-tuned LLama3 model as a modular back-end component capable 

of processing JSON-formatted inputs and outputs. We developed a specialized dataset 

through advanced prompt engineering with the Phi-3.5 model and fine-tuned LLama3 using 

Quantized Low-Rank Adaptation (QLoRA) on a single NVIDIA T4 GPU. An API layer was 

designed to facilitate seamless communication between clients and the LLM, effectively 

replacing conventional application logic. Our fine-tuned model achieved an average accuracy 

of 76.5¥% and a response time of 3.56 s across 100 test cases, demonstrating its effectiveness 

in handling back-end tasks. This work underscores the potential of LLMs to transform AI-

driven back-end architectures, offering scalable and efficient solutions for modern web 

services.  
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1. Introduction 

A back-end web server operates as the hidden backbone of a website, managing 

logic and data processing to support user-facing interactions. It is responsible for 

receiving requests from clients’ web browsers, processing them, interacting with 

databases to retrieve or store information, and delivering appropriate responses to the 

user’s browser. The core components of a back-end server include three key parts: 

the server (hardware), the application, and the database. The database maintains the 

system state, while the application handles incoming requests, processes data, and 

generates responses. Both databases and applications operate on physical machines 

or cloud-based environments. Among these components, the application often 

requires extensive development resources to implement and maintain. 

Recent advances in artificial intelligence (AI) have introduced Large Language 

Models (LLMs), which excel at processing, understanding, and generating human-

like text. However, this language-centric capability can extend beyond human 

languages. For instance, JSON-formatted messages, a common communication 

format in web services, can be treated as a structured language. By leveraging this 

perspective, LLMs can emulate the logic and behavior of traditional back-end 

applications. 

To tap into this potential, LLMs must be tailored to the specific needs and 

workflows of a given back-end. Fine-tuning—a machine learning technique that 

further trains a pre-trained model on a domain-specific dataset [1]—offers a 
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promising solution [2]. Through fine-tuning, LLMs can evolve from general-purpose 

language generators into specialized components that accurately process input, apply 

custom logic, and return responses in prescribed formats. 

The contribution of this paper is to demonstrate how an LLM can be fine-tuned 

to function as a modular component within a traditional back-end architecture. 

Specifically, we show how to adapt a pre-trained LLM to produce responses in a 

predefined, structured format—akin to a custom back-end application. This approach 

highlights a practical pathway for integrating LLMs into conventional web back-end 

servers, potentially reducing development overhead and streamlining the 

implementation of specialized logic. 

2. Related work 

In this section, we review related work on integrating Large Language Models 

(LLMs) into traditional web services. 

Recent advances in LLMs have spurred a surge in research exploring their 

integration into back-end and service-oriented architectures. For instance, RestGPT 

Song et al. [3] introduces a framework that enables LLMs to interact directly with 

RESTful APIs, allowing them to perform complex tasks by decomposing 

instructions and selecting appropriate API endpoints. This approach highlights how 

LLMs can serve as dynamic components, replacing certain traditional back-end 

functions. However, RESTGPT is designed to convert human language into RESTful 

outputs, facilitating human interaction with other systems. On the other hand, our 

method utilizes LLMs to directly interface with APIs, encompassing both the 

generation of outputs and the processing of RESTful inputs. Similarly, the Large 

Search Model, Wang et al. [4] proposes a unified framework that employs LLMs to 

handle traditionally distinct search pipeline tasks—such as query interpretation, 

retrieval, and ranking—by framing these operations as autoregressive text generation 

problems. This innovation streamlines the search process and reduces the complexity 

of conventional, modularized search stacks. 

Another direction, exemplified by the Sahaay system [5] and efforts in e-

government services [6], demonstrates how LLMs can replace human-driven or 

fixed-rule components in specialized applications. In the case of Sahaay, LLMs 

integrate with customer service platforms, automating tasks like query resolution and 

response generation, thereby reducing reliance on human agents or individually 

tailored modules. In the e-government domain, researchers have explored Retrieval-

Augmented Generation (RAG) architectures to enhance public services [7], 

illustrating that LLMs can improve processes traditionally reliant on rigid, manually 

coded logic. 

While previous research has explored the use of Large Language Models 

(LLMs) for back-end tasks, often leveraging pre-trained models or generic prompts, 

our work distinguishes itself by focusing on the fine-tuning of LLMs for modular 

back-end integration. This targeted customization enables LLMs to generate 

application-specific responses, effectively bridging the gap between the flexibility of 

natural language processing and the stringent demands of traditional back-end 

systems. Unlike approaches relying on extensive, handcrafted prompting or utilizing 
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unmodified LLMs, our method systematically refines the model’s parameters to 

directly implement domain logic and produce structured, application-specific 

outputs. This fine-tuning approach allows for a more robust and efficient integration 

compared to prompt engineering or relying on the general capabilities of pre-trained 

models. 

Our key contribution is demonstrating the transformative potential of fine-

tuning to convert a general-purpose LLM into a specialized, production-ready back-

end service. By tailoring the model to a specific back-end function and training it to 

generate domain-specific, structured output formats, we offer a practical and 

efficient methodology for seamlessly integrating LLMs as drop-in replacements or 

supplementary components within existing systems. This fine-tuning approach 

significantly reduces the development complexity and engineering overhead 

associated with traditional server-side logic, thereby enabling the creation of more 

flexible and intelligent, AI-driven back-end architectures. 

3. Methodology 

This section outlines the methodology for integrating a fine-tuned Large 

Language Model (LLM) into a traditional back-end system, encompassing dataset 

creation, API layer design and implementation, deployment of the LLM as a service, 

and the overall system workflow. 

3.1. Dataset creation 

To effectively fine-tune the Large Language Model (LLM) for handling JSON-

formatted inputs and outputs, we developed a specialized dataset [8] tailored to the 

requirements of our back-end system. The dataset creation process is pivotal, as it 

directly influences the model’s ability to accurately parse, process, and generate 

structured responses. 

This subsection delineates the steps undertaken to create the dataset, including: 

1) Dataset Composition: Description of the data fields, format, and structure. 

2) Generation Methodology: Strategies and tools used to generate and validate the 

dataset. 

3) Computational Resources: Details of the hardware and software environments 

utilized for dataset creation and processing. 

3.1.1. Dataset composition 

The dataset [9] comprises 5,000 entries, each structured to facilitate the training 

of the LLM in handling diverse types of inputs and generating corresponding JSON-

formatted outputs. Each entry in the dataset consists of four columns (examples 

shown in Table 1): 

• Output String: The desired JSON-formatted response that the model should 

generate. 

• Structured Input String: A JSON-formatted request that the model needs to 

process. 

• Direct Input String: A direct, non-structured query related to the structured 

input. 

• Conversational Input String: A conversationally phrased version of the direct 
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input query. 

Table 1. Different format prompt for the same structured output. 

Input Output 

{"A":74, "op":"*", "B":70} {"result": "5180"} 

What is the result of multiplying 74 by 70? {"result": "5180"} 

Calculate the result when you multiply 74 by 70? {"result": "5180"} 

3.1.2. Dataset generation methodology 

The dataset was generated using the Phi-3.5 model [10] through meticulous 

prompt engineering. This approach involved designing specific prompts that 

instructed Phi-3.5 to produce the required structured and unstructured inputs 

alongside their corresponding outputs. The process ensured that the dataset 

encapsulated a wide variety of request types and response scenarios, enhancing the 

LLM’s ability to generalize across different contexts. 

3.1.3. Prompt engineering 

Prompt engineering was employed to guide the Phi-3.5 model in generating 

high-quality, diverse data entries. The following Python template demonstrates how 

prompts were designed to convert structured inputs into various question types. 

PROMPT_TEMPLATE = [ 

    { 

        "role": "system", 

        "content": "You are an AI assistant that converts structured prompts into 

{conversion_type} questions and no need to answer it" 

    }, 

    { 

        "role": "user", 

        "content": ( 

            "Convert the following structured prompt into a {conversion_type} 

question:\n" 

            "Structured Prompt: {structured_input}\n" 

        ) 

    } 

] 

Code example: Prompt Template for generating customize dataset 

To address the fundamental aspects of back-end API interactions, our dataset 

focuses on basic arithmetic operations, specifically addition (+), subtraction (-), 

multiplication (*), and division (/). The dataset comprises fewer than 100 entries, 

each representing a distinct arithmetic computation. 

While the current dataset is limited in scope, it serves as a critical initial step 

towards training the LLM for more complex operations and diverse business logic 

implementations in future iterations. 

3.1.4. Customized dataset development and reproducible workflow 

Our primary contribution is the development of a specialized dataset tailored for 
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training Large Language Models (LLMs) to process and generate structured JSON 

inputs and outputs. Utilizing the Phi-3.5 model and advanced prompt engineering 

techniques, we created a dataset that enables LLMs to accurately interpret diverse 

input formats and produce corresponding JSON-formatted responses. Additionally, 

we established a reproducible workflow that allows researchers and practitioners to 

customize and generate similar datasets tailored to their specific structured output 

requirements. This dual contribution not only enhances the integration of LLMs into 

traditional back-end systems by ensuring precise data handling but also provides a 

scalable framework for future dataset creation efforts, fostering consistency and 

reliability in training LLMs for structured data tasks. 

3.2. Dataset for database operations 

To further evaluate the generalizability of our fine-tuning approach and its 

applicability to a wider range of data-driven tasks, we introduce a new dataset 

specifically designed to simulate database operations [11] (micost-database-op, 

2024). This dataset complements our initial calculator model dataset and allows us to 

assess the model’s ability to handle more complex data structures and operations 

commonly encountered in real-world applications. By simulating typical database 

interactions, such as querying, inserting, updating, and deleting data, we aim to 

provide a comprehensive evaluation of the model’s performance in a more realistic 

and challenging scenario [12]. 

Dataset composition 1 

The dataset comprises 5000 entries, each structured to facilitate the training of 

the LLM in handling diverse types of inputs and generating corresponding JSON-

formatted outputs. That data structure is the same as the simple calculator dataset. 

Here below is the sample data. 

input : {"action": "insert", "table": "sales", "data": {"order_date": "‘2021-12-

08’", "amount": "860.13"}} 

output:   INSERT INTO sales (order_date, amount) VALUES (‘‘2021-12-08’’, 

‘860.13’); 

3.3. Supervised fine-tuning the large language model 

We performed supervised fine-tuning of the LLaMA3 model [13] using our 

custom dataset, employing QLoRA (Quantized Low-Rank Adaptation) [14] to 

efficiently adapt the model with limited computational resources. This fine-tuning 

process was executed on a single NVIDIA T4 GPU, enabling the model to accurately 

interpret and generate structured JSON outputs based on the diverse inputs provided 

in the dataset. 

By leveraging QLoRA, we optimized memory usage and accelerated training 

times without compromising the model’s performance. The resulting fine-tuned 

LLaMA3 model is now capable of reliably handling both machine-readable and 

human-readable requests within our back-end system, enhancing its overall 

functionality and responsiveness. 
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3.4. API Layer design and implementation 

The API Layer is responsible for managing communication between the client 

and the server. It formats and interprets RESTful requests and responses, handling 

tasks such as routing, data validation, and serialization. This layer ensures that 

requests from clients conform to the expected structure and that responses from the 

server are appropriately formatted for delivery. By isolating this functionality into a 

dedicated layer, we decouple the communication mechanics from the back-end’s 

Core Logic, allowing the LLM to focus exclusively on higher-order tasks. 

The API Layer also interfaces with the database. However, unlike traditional 

back-ends, it doesn’t directly execute database operations. Instead, it forwards 

database requests generated by the Core Logic Unit to the database service, treating 

it similarly to a front-end client. 

3.5. Integration of the Fine-tuned LLM as a Service 

The Core Logic Unit contains the bulk of the back-end’s application logic. 

Traditionally, this unit handles tasks such as business logic, database interactions, 

and processing rules specific to the application. In our design, this unit is replaced by 

an LLM, which is fine-tuned to emulate and execute the Core Logic of the 

application. The LLM processes structured inputs received from the API Layer, 

performs the necessary computations or decision-making processes, and generates 

structured outputs for the API Layer to format and deliver. 

3.6. System architecture 

 

Figure 1. System architecture. 

The system architecture is shown in Figure 1. 

• Request Handling: A RESTful request from the client is received by the API 

Layer, which validates and formats the request into a structured format, such as 

JSON. 

• Core Logic Execution: The structured request is passed to the LLM in the Core 

Logic Unit, which processes the input according to the application’s logic and 
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generates an appropriate response. 

• Response Formatting: The API Layer formats the LLM’s output into a RESTful 

response and sends it back to the client. 

This modular design ensures flexibility and scalability, allowing the API Layer 

to handle evolving communication protocols while the LLM adapts to increasingly 

complex back-end logic through iterative fine-tuning [15]. The separation of 

concerns also facilitates maintenance and testing, as each layer can be developed and 

validated independently. Our methodology demonstrates how LLMs can effectively 

replace traditional application logic in back-end systems, paving the way for AI-

driven web back-end architectures. 

4. Result 

This section presents the experimental results demonstrating the performance of 

the fine-tuned LLama3 model integrated into the back-end system. 

4.1. Performance metrics from the model fine-tuning process 

We summarized the fine-tuning results using WandB. Results are shown in 

Table 2. 

Table 2. Detailed evaluation and training metrics for fine-tuned model. 

Metric Value 

eval/loss 0.40704 

eval/runtime 26.0878 

eval/samples_per_second 3.833 

eval/steps_per_second 3.833 

total_flos 1.27385 × 1015 

train/epoch 1 

train/global_step 450 

train/grad_norm 1.03545 

train/learning_rate 0 

train/loss 0.4144 

train/runtime 670.3678 

train_samples_per_second 1.343 

train_steps_per_second 0.671 

4.2. API layer accuracy and response time 

We use the fine-tuned model as the Core Logic and test result accuracy and 

timing. The total number of test cases is 100. Results are shown in Table 3. 

Table 3. Performance Metrics of the API Layer. 

Average accuracy 0.765 

Average response time 3.56 
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5. Limitations and future work 

5.1. Limitations 

Despite the successful integration of the fine-tuned Large Language Model 

(LLM) into our back-end system, several limitations must be acknowledged: 

• Dataset Size and Computing Resources: The relatively small size of our dataset, 

coupled with limited computing resources, constrains the accuracy and 

generalizability of the trained model. A larger and more diverse dataset, 

alongside enhanced computational capabilities, could facilitate more nuanced 

learning and improve the model’s performance across a broader range of tasks. 

• Response Time: While the LLM-based service demonstrates stability across all 

tasks, its response time is noticeably slower compared to traditional back-end 

services. This latency may impact real-time applications where swift responses 

are critical. Although the system maintains consistent performance, optimizing 

the model architecture and deployment strategies is necessary to achieve 

response times comparable to conventional services. 

5.2. Future work 

To overcome current limitations and enhance the system, future work will focus 

on: 

• Expanding the Dataset and Upgrading Computational Resources: Increasing the 

dataset size and diversity will improve the LLM’s accuracy and adaptability. 

Additionally, enhancing computing infrastructure will allow for more extensive 

training and better overall performance. 

• Optimizing Model Efficiency and Reducing Latency: Implementing 

optimization techniques like quantization and pruning can lower computational 

demands and speed up response times. Exploring specialized hardware and 

alternative deployment frameworks will further enhance efficiency without 

compromising system stability. 

These improvements will address existing limitations and boost the system’s 

effectiveness in real-world applications. 

6. Conclusions 

This study presents a specialized dataset for training Large Language Models 

(LLMs) to handle structured JSON inputs and outputs, addressing a significant 

research gap. Utilizing the Phi3.5 model and advanced prompt engineering 

techniques [16], we created a robust dataset that enables LLama3 to accurately 

interpret and generate JSON-formatted responses. Additionally, we established a 

reproducible workflow, allowing other researchers and practitioners to develop 

customized datasets for integrating LLMs into traditional back-end systems. Despite 

limitations in dataset size and computational resources, our approach demonstrates 

the potential of fine-tuned LLMs to enhance the functionality and responsiveness of 

back-end services. This work lays the foundation for future advancements in training 

methodologies and dataset expansion, paving the way for more efficient and accurate 

integration of LLMs in diverse operational environments. 
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