
Computer and Telecommunication Engineering 2025, 3(1), 3168.

https://doi.org/10.54517/cte3168

1

Article

Fine-tuned large language models into traditional back-end web

architectures

Bowen Li1, Chuan Zhang2,*

1 School of Computing Technologies, Royal Melbourne Institue of Technology, Melbourne 3001, Australia
2 Wanghaiyiyuan 2-12D, Shenzhen 518000, China

* Corresponding author: Chuan Zhang, chuan.z@hotmail.com

Abstract: Integrating Large Language Models (LLMs) into traditional back-end systems can

significantly reduce development overhead and enhance flexibility. This paper presents a

novel approach using a fine-tuned LLama3 model as a modular back-end component capable

of processing JSON-formatted inputs and outputs. We developed a specialized dataset

through advanced prompt engineering with the Phi-3.5 model and fine-tuned LLama3 using

Quantized Low-Rank Adaptation (QLoRA) on a single NVIDIA T4 GPU. An API layer was

designed to facilitate seamless communication between clients and the LLM, effectively

replacing conventional application logic. Our fine-tuned model achieved an average accuracy

of 76.5¥% and a response time of 3.56 s across 100 test cases, demonstrating its effectiveness

in handling back-end tasks. This work underscores the potential of LLMs to transform AI-

driven back-end architectures, offering scalable and efficient solutions for modern web

services.

Keywords: LLM; AI; back-end; fine-tuning; web service; LLama3

1. Introduction

A back-end web server operates as the hidden backbone of a website, managing

logic and data processing to support user-facing interactions. It is responsible for

receiving requests from clients’ web browsers, processing them, interacting with

databases to retrieve or store information, and delivering appropriate responses to the

user’s browser. The core components of a back-end server include three key parts:

the server (hardware), the application, and the database. The database maintains the

system state, while the application handles incoming requests, processes data, and

generates responses. Both databases and applications operate on physical machines

or cloud-based environments. Among these components, the application often

requires extensive development resources to implement and maintain.

Recent advances in artificial intelligence (AI) have introduced Large Language

Models (LLMs), which excel at processing, understanding, and generating human-

like text. However, this language-centric capability can extend beyond human

languages. For instance, JSON-formatted messages, a common communication

format in web services, can be treated as a structured language. By leveraging this

perspective, LLMs can emulate the logic and behavior of traditional back-end

applications.

To tap into this potential, LLMs must be tailored to the specific needs and

workflows of a given back-end. Fine-tuning—a machine learning technique that

further trains a pre-trained model on a domain-specific dataset [1]—offers a

CITATION

Li B, Zhang C. Fine-tuned large

language models into traditional

back-end web architectures.

Computer and Telecommunication

Engineering. 2025; 3(1): 3168.

https://doi.org/10.54517/cte3168

ARTICLE INFO

Received: 18 December 2024

Accepted: 11 March 2025

Available online: 19 March 2025

COPYRIGHT

Copyright © 2025 by author(s).

Computer and Telecommunication

Engineering is published by Asia

Pacific Academy of Science Pte. Ltd.

This work is licensed under the

Creative Commons Attribution (CC

BY) license.

https://creativecommons.org/licenses/

by/4.0/

Computer and Telecommunication Engineering 2025, 3(1), 3168.

2

promising solution [2]. Through fine-tuning, LLMs can evolve from general-purpose

language generators into specialized components that accurately process input, apply

custom logic, and return responses in prescribed formats.

The contribution of this paper is to demonstrate how an LLM can be fine-tuned

to function as a modular component within a traditional back-end architecture.

Specifically, we show how to adapt a pre-trained LLM to produce responses in a

predefined, structured format—akin to a custom back-end application. This approach

highlights a practical pathway for integrating LLMs into conventional web back-end

servers, potentially reducing development overhead and streamlining the

implementation of specialized logic.

2. Related work

In this section, we review related work on integrating Large Language Models

(LLMs) into traditional web services.

Recent advances in LLMs have spurred a surge in research exploring their

integration into back-end and service-oriented architectures. For instance, RestGPT

Song et al. [3] introduces a framework that enables LLMs to interact directly with

RESTful APIs, allowing them to perform complex tasks by decomposing

instructions and selecting appropriate API endpoints. This approach highlights how

LLMs can serve as dynamic components, replacing certain traditional back-end

functions. However, RESTGPT is designed to convert human language into RESTful

outputs, facilitating human interaction with other systems. On the other hand, our

method utilizes LLMs to directly interface with APIs, encompassing both the

generation of outputs and the processing of RESTful inputs. Similarly, the Large

Search Model, Wang et al. [4] proposes a unified framework that employs LLMs to

handle traditionally distinct search pipeline tasks—such as query interpretation,

retrieval, and ranking—by framing these operations as autoregressive text generation

problems. This innovation streamlines the search process and reduces the complexity

of conventional, modularized search stacks.

Another direction, exemplified by the Sahaay system [5] and efforts in e-

government services [6], demonstrates how LLMs can replace human-driven or

fixed-rule components in specialized applications. In the case of Sahaay, LLMs

integrate with customer service platforms, automating tasks like query resolution and

response generation, thereby reducing reliance on human agents or individually

tailored modules. In the e-government domain, researchers have explored Retrieval-

Augmented Generation (RAG) architectures to enhance public services [7],

illustrating that LLMs can improve processes traditionally reliant on rigid, manually

coded logic.

While previous research has explored the use of Large Language Models

(LLMs) for back-end tasks, often leveraging pre-trained models or generic prompts,

our work distinguishes itself by focusing on the fine-tuning of LLMs for modular

back-end integration. This targeted customization enables LLMs to generate

application-specific responses, effectively bridging the gap between the flexibility of

natural language processing and the stringent demands of traditional back-end

systems. Unlike approaches relying on extensive, handcrafted prompting or utilizing

Computer and Telecommunication Engineering 2025, 3(1), 3168.

3

unmodified LLMs, our method systematically refines the model’s parameters to

directly implement domain logic and produce structured, application-specific

outputs. This fine-tuning approach allows for a more robust and efficient integration

compared to prompt engineering or relying on the general capabilities of pre-trained

models.

Our key contribution is demonstrating the transformative potential of fine-

tuning to convert a general-purpose LLM into a specialized, production-ready back-

end service. By tailoring the model to a specific back-end function and training it to

generate domain-specific, structured output formats, we offer a practical and

efficient methodology for seamlessly integrating LLMs as drop-in replacements or

supplementary components within existing systems. This fine-tuning approach

significantly reduces the development complexity and engineering overhead

associated with traditional server-side logic, thereby enabling the creation of more

flexible and intelligent, AI-driven back-end architectures.

3. Methodology

This section outlines the methodology for integrating a fine-tuned Large

Language Model (LLM) into a traditional back-end system, encompassing dataset

creation, API layer design and implementation, deployment of the LLM as a service,

and the overall system workflow.

3.1. Dataset creation

To effectively fine-tune the Large Language Model (LLM) for handling JSON-

formatted inputs and outputs, we developed a specialized dataset [8] tailored to the

requirements of our back-end system. The dataset creation process is pivotal, as it

directly influences the model’s ability to accurately parse, process, and generate

structured responses.

This subsection delineates the steps undertaken to create the dataset, including:

1) Dataset Composition: Description of the data fields, format, and structure.

2) Generation Methodology: Strategies and tools used to generate and validate the

dataset.

3) Computational Resources: Details of the hardware and software environments

utilized for dataset creation and processing.

3.1.1. Dataset composition

The dataset [9] comprises 5,000 entries, each structured to facilitate the training

of the LLM in handling diverse types of inputs and generating corresponding JSON-

formatted outputs. Each entry in the dataset consists of four columns (examples

shown in Table 1):

• Output String: The desired JSON-formatted response that the model should

generate.

• Structured Input String: A JSON-formatted request that the model needs to

process.

• Direct Input String: A direct, non-structured query related to the structured

input.

• Conversational Input String: A conversationally phrased version of the direct

Computer and Telecommunication Engineering 2025, 3(1), 3168.

4

input query.

Table 1. Different format prompt for the same structured output.

Input Output

{"A":74, "op":"*", "B":70} {"result": "5180"}

What is the result of multiplying 74 by 70? {"result": "5180"}

Calculate the result when you multiply 74 by 70? {"result": "5180"}

3.1.2. Dataset generation methodology

The dataset was generated using the Phi-3.5 model [10] through meticulous

prompt engineering. This approach involved designing specific prompts that

instructed Phi-3.5 to produce the required structured and unstructured inputs

alongside their corresponding outputs. The process ensured that the dataset

encapsulated a wide variety of request types and response scenarios, enhancing the

LLM’s ability to generalize across different contexts.

3.1.3. Prompt engineering

Prompt engineering was employed to guide the Phi-3.5 model in generating

high-quality, diverse data entries. The following Python template demonstrates how

prompts were designed to convert structured inputs into various question types.

PROMPT_TEMPLATE = [

 {

 "role": "system",

 "content": "You are an AI assistant that converts structured prompts into

{conversion_type} questions and no need to answer it"

 },

 {

 "role": "user",

 "content": (

 "Convert the following structured prompt into a {conversion_type}

question:\n"

 "Structured Prompt: {structured_input}\n"

)

 }

]

Code example: Prompt Template for generating customize dataset

To address the fundamental aspects of back-end API interactions, our dataset

focuses on basic arithmetic operations, specifically addition (+), subtraction (-),

multiplication (*), and division (/). The dataset comprises fewer than 100 entries,

each representing a distinct arithmetic computation.

While the current dataset is limited in scope, it serves as a critical initial step

towards training the LLM for more complex operations and diverse business logic

implementations in future iterations.

3.1.4. Customized dataset development and reproducible workflow

Our primary contribution is the development of a specialized dataset tailored for

Computer and Telecommunication Engineering 2025, 3(1), 3168.

5

training Large Language Models (LLMs) to process and generate structured JSON

inputs and outputs. Utilizing the Phi-3.5 model and advanced prompt engineering

techniques, we created a dataset that enables LLMs to accurately interpret diverse

input formats and produce corresponding JSON-formatted responses. Additionally,

we established a reproducible workflow that allows researchers and practitioners to

customize and generate similar datasets tailored to their specific structured output

requirements. This dual contribution not only enhances the integration of LLMs into

traditional back-end systems by ensuring precise data handling but also provides a

scalable framework for future dataset creation efforts, fostering consistency and

reliability in training LLMs for structured data tasks.

3.2. Dataset for database operations

To further evaluate the generalizability of our fine-tuning approach and its

applicability to a wider range of data-driven tasks, we introduce a new dataset

specifically designed to simulate database operations [11] (micost-database-op,

2024). This dataset complements our initial calculator model dataset and allows us to

assess the model’s ability to handle more complex data structures and operations

commonly encountered in real-world applications. By simulating typical database

interactions, such as querying, inserting, updating, and deleting data, we aim to

provide a comprehensive evaluation of the model’s performance in a more realistic

and challenging scenario [12].

Dataset composition 1

The dataset comprises 5000 entries, each structured to facilitate the training of

the LLM in handling diverse types of inputs and generating corresponding JSON-

formatted outputs. That data structure is the same as the simple calculator dataset.

Here below is the sample data.

input : {"action": "insert", "table": "sales", "data": {"order_date": "‘2021-12-

08’", "amount": "860.13"}}

output: INSERT INTO sales (order_date, amount) VALUES (‘‘2021-12-08’’,

‘860.13’);

3.3. Supervised fine-tuning the large language model

We performed supervised fine-tuning of the LLaMA3 model [13] using our

custom dataset, employing QLoRA (Quantized Low-Rank Adaptation) [14] to

efficiently adapt the model with limited computational resources. This fine-tuning

process was executed on a single NVIDIA T4 GPU, enabling the model to accurately

interpret and generate structured JSON outputs based on the diverse inputs provided

in the dataset.

By leveraging QLoRA, we optimized memory usage and accelerated training

times without compromising the model’s performance. The resulting fine-tuned

LLaMA3 model is now capable of reliably handling both machine-readable and

human-readable requests within our back-end system, enhancing its overall

functionality and responsiveness.

Computer and Telecommunication Engineering 2025, 3(1), 3168.

6

3.4. API Layer design and implementation

The API Layer is responsible for managing communication between the client

and the server. It formats and interprets RESTful requests and responses, handling

tasks such as routing, data validation, and serialization. This layer ensures that

requests from clients conform to the expected structure and that responses from the

server are appropriately formatted for delivery. By isolating this functionality into a

dedicated layer, we decouple the communication mechanics from the back-end’s

Core Logic, allowing the LLM to focus exclusively on higher-order tasks.

The API Layer also interfaces with the database. However, unlike traditional

back-ends, it doesn’t directly execute database operations. Instead, it forwards

database requests generated by the Core Logic Unit to the database service, treating

it similarly to a front-end client.

3.5. Integration of the Fine-tuned LLM as a Service

The Core Logic Unit contains the bulk of the back-end’s application logic.

Traditionally, this unit handles tasks such as business logic, database interactions,

and processing rules specific to the application. In our design, this unit is replaced by

an LLM, which is fine-tuned to emulate and execute the Core Logic of the

application. The LLM processes structured inputs received from the API Layer,

performs the necessary computations or decision-making processes, and generates

structured outputs for the API Layer to format and deliver.

3.6. System architecture

Figure 1. System architecture.

The system architecture is shown in Figure 1.

• Request Handling: A RESTful request from the client is received by the API

Layer, which validates and formats the request into a structured format, such as

JSON.

• Core Logic Execution: The structured request is passed to the LLM in the Core

Logic Unit, which processes the input according to the application’s logic and

Computer and Telecommunication Engineering 2025, 3(1), 3168.

7

generates an appropriate response.

• Response Formatting: The API Layer formats the LLM’s output into a RESTful

response and sends it back to the client.

This modular design ensures flexibility and scalability, allowing the API Layer

to handle evolving communication protocols while the LLM adapts to increasingly

complex back-end logic through iterative fine-tuning [15]. The separation of

concerns also facilitates maintenance and testing, as each layer can be developed and

validated independently. Our methodology demonstrates how LLMs can effectively

replace traditional application logic in back-end systems, paving the way for AI-

driven web back-end architectures.

4. Result

This section presents the experimental results demonstrating the performance of

the fine-tuned LLama3 model integrated into the back-end system.

4.1. Performance metrics from the model fine-tuning process

We summarized the fine-tuning results using WandB. Results are shown in

Table 2.

Table 2. Detailed evaluation and training metrics for fine-tuned model.

Metric Value

eval/loss 0.40704

eval/runtime 26.0878

eval/samples_per_second 3.833

eval/steps_per_second 3.833

total_flos 1.27385 × 1015

train/epoch 1

train/global_step 450

train/grad_norm 1.03545

train/learning_rate 0

train/loss 0.4144

train/runtime 670.3678

train_samples_per_second 1.343

train_steps_per_second 0.671

4.2. API layer accuracy and response time

We use the fine-tuned model as the Core Logic and test result accuracy and

timing. The total number of test cases is 100. Results are shown in Table 3.

Table 3. Performance Metrics of the API Layer.

Average accuracy 0.765

Average response time 3.56

Computer and Telecommunication Engineering 2025, 3(1), 3168.

8

5. Limitations and future work

5.1. Limitations

Despite the successful integration of the fine-tuned Large Language Model

(LLM) into our back-end system, several limitations must be acknowledged:

• Dataset Size and Computing Resources: The relatively small size of our dataset,

coupled with limited computing resources, constrains the accuracy and

generalizability of the trained model. A larger and more diverse dataset,

alongside enhanced computational capabilities, could facilitate more nuanced

learning and improve the model’s performance across a broader range of tasks.

• Response Time: While the LLM-based service demonstrates stability across all

tasks, its response time is noticeably slower compared to traditional back-end

services. This latency may impact real-time applications where swift responses

are critical. Although the system maintains consistent performance, optimizing

the model architecture and deployment strategies is necessary to achieve

response times comparable to conventional services.

5.2. Future work

To overcome current limitations and enhance the system, future work will focus

on:

• Expanding the Dataset and Upgrading Computational Resources: Increasing the

dataset size and diversity will improve the LLM’s accuracy and adaptability.

Additionally, enhancing computing infrastructure will allow for more extensive

training and better overall performance.

• Optimizing Model Efficiency and Reducing Latency: Implementing

optimization techniques like quantization and pruning can lower computational

demands and speed up response times. Exploring specialized hardware and

alternative deployment frameworks will further enhance efficiency without

compromising system stability.

These improvements will address existing limitations and boost the system’s

effectiveness in real-world applications.

6. Conclusions

This study presents a specialized dataset for training Large Language Models

(LLMs) to handle structured JSON inputs and outputs, addressing a significant

research gap. Utilizing the Phi3.5 model and advanced prompt engineering

techniques [16], we created a robust dataset that enables LLama3 to accurately

interpret and generate JSON-formatted responses. Additionally, we established a

reproducible workflow, allowing other researchers and practitioners to develop

customized datasets for integrating LLMs into traditional back-end systems. Despite

limitations in dataset size and computational resources, our approach demonstrates

the potential of fine-tuned LLMs to enhance the functionality and responsiveness of

back-end services. This work lays the foundation for future advancements in training

methodologies and dataset expansion, paving the way for more efficient and accurate

integration of LLMs in diverse operational environments.

Computer and Telecommunication Engineering 2025, 3(1), 3168.

9

Author contributions: Conceptualization, CZ; methodology, CZ and BL; software,

BL; validation, CZ and BL; formal analysis, BL; investigation, BL; resources, CZ;

data curation, BL; writing—original draft preparation, CZ; writing—review and

editing, BL; visualization, CZ; supervision, BL; project administration, BL; funding

acquisition, BL. All authors have read and agreed to the published version of the

manuscript.

Conflict of interest: The authors declare no conflict of interest.

References

1. RoX818. How to Curate Datasets for OpenAI Fine-Tuning Success. AI Competence. Available online:

https://aicompetence.org/how-to-curate-datasets-for-openai-fine-tuning/ (accessed on 22 January 2025).

2. Parthasarathy VB, Zafar A, Khan A, et al. The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An

Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities. Available

online: https://arxiv.org/html/2408.13296v1 (accessed on 15 October 2024).

3. Song Y, Xiong W, Zhu D, et al. RestGPT: Connecting Large Language Models with Real-World RESTful APIs. Available

online: https://arxiv.org/abs/2306.06624 (accessed on 15 October 2024)

4. Wang L, Yang N, Huang X, et al. Large Search Model: Redefining Search Stack in the Era of LLMs. Available online:

https://arxiv.org/abs/2310.14587 (accessed on 21 October 2024).

5. Pandya K, Holia M. Automating Customer Service Using LangChain: Building Custom Open-Source GPT Chatbot for

Organizations. Available online: https://arxiv.org/abs/2310.05421 (accessed on 21 October 2024).

6. Papageorgiou G, Sarlis V, Maragoudakis M, et al. Enhancing E-Government Services Through State-of-the-Art, Modular,

and Reproducible Architecture Over Large Language Models. Applied Sciences. 2024; 14(18): 8259. doi:

10.3390/app14188259.

7. Lewis P, Oguz B, Rinott R, et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Available online:

https://arxiv.org/abs/2005.11401 (accessed on 21 October 2024).

8. Aisuko. Diverse Calculation. Hugging Face. Available online: https://huggingface.co/datasets/aisuko/diverse_calculation.

https://doi.org/10.57967/hf/3724 (accessed on 9 December 2024).

9. Micost. simple_calculation. Hugging Face Datasets. Available online:

https://huggingface.co/datasets/micost/simple_calculation (accessed on 14 December 2024).

10. Abdin M, Jacobs SA, Awan AA, et al. Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone.

Available online: https://api.semanticscholar.org/CorpusID:269293048 (accessed on 8 December 2024).

11. Micost. db_operate. Hugging Face Datasets. Available online: https://huggingface.co/datasets/micost/db_operate (accessed

on 8 December 2024).

12. Micost. Fine-tuning Llama 3 with Simple Calculation. Kaggle. Available online: https://www.kaggle.com/code/micost/fine-

tuning-llama-3-with-simple-calculation (accessed on 8 December 2024).

13. Llama Team, AI @ Meta. The Llama 3 Herd of Models. Available online: https://arxiv.org/abs/2407.21783 (accessed on 8

December 2024).

14. Dettmers T, Pagnoni A, Holtzman A. QLoRA: Efficient Finetuning of Quantized LLMs. Available online:

https://arxiv.org/abs/2305.14314 (accessed on 8 December 2024).

15. Mathav Raj J, Kushala VM, Warrier H, et al. Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations.

Available online: https://arxiv.org/abs/2404.10779 (accessed on 8 December 2024).

16. Microsoft. Phi-3.5-mini-instruct. Hugging Face. Available online: https://huggingface.co/microsoft/Phi-3.5-mini-instruct

(accessed on 8 December 2024).

