
Semi-autonomous sensor fusion-based strategy for unmanned aerial atmospheric surveillance system in open field environments
Vol 2, Issue 2, 2024
Download PDF
Abstract
This paper explores the convergence of semi-autonomous systems and sensor fusion for monitoring hazardous atmospheric substances in open and semi-confined environments such as open-pit mines. As the heart of this system, a universal and flexible device leveraging wireless technologies to collect and analyze large volumes of data, designed by the authors, is proposed. The article outlines the key components of the platform, emphasizing its potential for increasing personnel safety levels as stipulated by the international public exposure guidelines. In modern mines, it becomes crucial to monitor elevated concentrations of nitrogen and carbon oxides, as well as other pollutants after blasting and the toxic gas emissions produced by the heavy transportation equipment such as mining trucks and excavators. In this paper, industrial-grade electrochemical sensors are compared with price-affordable but less precise microelectrochemical ones. The performed experiments for lowering computational requirements show promising results. The integration of an ultrasonic anemometer enhances the system’s capabilities, contributing to a comprehensive understanding of atmospheric conditions. In parallel, the research discusses the role of computer vision in autonomous control systems, with a focus on the architecture and processing pipeline of the state-of-the-art system-on-module Kria by AMD. Advocating the potential of adaptive computing for enhanced efficiency in dynamic environments, the paper underlines the importance of the integrated approach in developing a semi-autonomous atmospheric surveillance system and highlights the impact of adaptive computing in dynamic scenarios. The main part of the measuring equipment and methods has been experimented with in real conditions in open-pit mines in Bulgaria. This is an initial phase of ongoing research aimed at serving as a foundation for future improvements and the elaboration of a fully autonomous prototype for hazardous substances evaluation in the atmosphere of open-pit mines.
Keywords
References
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Yassen Gorbounov, Zahari Dinchev, Petar Peychinov
License URL: https://creativecommons.org/licenses/by/4.0/

Prof. Maode Ma
Qatar University, Qatar
The field of computer and telecommunications engineering is rapidly advancing, with the following being some of the latest developments.
more
We are pleased to congratulate the first anniversiry of the journal of Computer and Telecommunication Engineering (CTE).
more
Owing to the tireless dedication of the editor-in-chief, editorial board members, and the in-house editorial team, we are proud to announce the successful online launch of the first issue of Computer and Telecommunication Engineering.
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.