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Abstract: This paper explores the convergence of semi-autonomous systems and sensor fusion 

for monitoring hazardous atmospheric substances in open and semi-confined environments 

such as open-pit mines. As the heart of this system, a universal and flexible device leveraging 

wireless technologies to collect and analyze large volumes of data, designed by the authors, is 

proposed. The article outlines the key components of the platform, emphasizing its potential 

for increasing personnel safety levels as stipulated by the international public exposure 

guidelines. In modern mines, it becomes crucial to monitor elevated concentrations of nitrogen 

and carbon oxides, as well as other pollutants after blasting and the toxic gas emissions 

produced by the heavy transportation equipment such as mining trucks and excavators. In this 

paper, industrial-grade electrochemical sensors are compared with price-affordable but less 

precise microelectrochemical ones. The performed experiments for lowering computational 

requirements show promising results. The integration of an ultrasonic anemometer enhances 

the system’s capabilities, contributing to a comprehensive understanding of atmospheric 

conditions. In parallel, the research discusses the role of computer vision in autonomous control 

systems, with a focus on the architecture and processing pipeline of the state-of-the-art system-

on-module Kria by AMD. Advocating the potential of adaptive computing for enhanced 

efficiency in dynamic environments, the paper underlines the importance of the integrated 

approach in developing a semi-autonomous atmospheric surveillance system and highlights the 

impact of adaptive computing in dynamic scenarios. The main part of the measuring equipment 

and methods has been experimented with in real conditions in open-pit mines in Bulgaria. This 

is an initial phase of ongoing research aimed at serving as a foundation for future improvements 

and the elaboration of a fully autonomous prototype for hazardous substances evaluation in the 

atmosphere of open-pit mines. 

Keywords: IoT; wireless network; gas sensor; autonomous systems; atmospheric surveillance; 

technical safety 

1. Introduction 

Modern mineral extraction processes are inconceivable without the deployment 
of explosives, characterized by their cost-effectiveness and capacity to liberate 
substantial energy rapidly harnessed for rock crushing applications. In the context of 
opencast mining, the utilization of explosives results in the emission of numerous toxic 
gases, directly infiltrating the open-pit mine’s atmosphere, thereby posing a tangible 
hazard to workers. The initial cloud characterization after blasting can be seen in 
Figure 1a, and the ensuing hazardous gas distribution is given in Figure 1b. Beyond 
the harmful effects of explosive detonations, which introduce elevated concentrations 
of nitrogen and carbon oxides into the work environment, the internal combustion 
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engines of mining trucks and excavators further compromise the open-pit mine 
atmosphere. These engines combust significant quantities of diesel fuel, contributing 
to atmospheric pollution. The spectrum of pollution sources encompasses dust, gases, 
noise, and even radioactive compounds [1–4]. The detrimental gases discharged 
during blasting primarily include nitrogen oxide (NO), nitrogen dioxide (NO2), carbon 
monoxide (CO), and sulfur dioxide (SO2), with potential variations depending on the 
chemical composition of the rocks and explosives employed. 

(a) (b) 

Figure 1. The scientific perspective of the initial cloud characterization. (a) blasting 
operation; (b) gas distribution after the explosion. 

Explosives, despite their cost-effectiveness and inherent safety, pose a 
heightened risk of generating a concentrated toxic milieu in the event of a “volley” 
explosion. The NO and NO2 are often found as by-products in the post-blast gases of 
ammonium nitrate-based (NH4NO3) explosives. Together, these gases are referred to 
as “NOx”. While nitric oxide is imperceptible, nitrogen dioxide manifests in hues 
ranging from yellow to dark red, contingent upon the concentration and dimensions of 
the gas cloud. 

The American Industrial Hygiene Association (AIHA) [5] has established 
international public exposure guidelines, including the Emergency Response Planning 
Guidelines (ERPG), which delineate three tiers of exposure values. Furthermore, 
Immediate Danger for Life and Health (IDLH) [6] specifies the maximum allowable 
exposure level to a given hazard for a healthy individual over a 30-minute duration, 
beyond which irreversible health consequences may occur. 

Table 1 provides the permissible concentrations for an 8 h total weight average 
(TWA) permissible exposure limit (PEL) and short-term exposure limit (STEL) 
concentration, allowing exposure for up to 15 min. 

Table 1. Permissible concentrations for toxic gases. 

Toxic gas Concentration, ppm [5] 

IDLH [7] (≤  30  min)  ERPG-3 ( ≤60  min)  TWA STEL 

NO2 13 20 0.5 1 

NO 100 - 2 - 

SO2 100 25 0.5 1 

CO 1200 500 20 100 

A medium-sized open-pit mine utilizes varying quantities of explosives weekly, 
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ranging from several dozen to several hundred tons, with detonations occurring once 
or twice. Each kilogram of explosive yields an average of 110 L of NOx. Simultaneous 
detonations in multiple blast fields, located at different elevations within the mine, are 
common. Post-blast, ensuring safe working atmosphere necessitates diluting toxic 
gases to prescribed levels. Large open-pit mines rely on natural ventilation, contingent 
on mine configuration and atmospheric conditions during blasting, including wind 
speed, direction, temperature, air pressure, sunlight, and humidity. Natural ventilation 
duration, influenced by diverse atmospheric conditions, ranges from minutes to days, 
especially in the presence of temperature inversions and wind absence. Portable 
devices, carried by workers overseeing blasting operations, are employed to measure 
gas content post-blast. Workers must inspect blast fields for potential failed charges 
and assess toxic gas concentrations before granting permission for other mineworkers 
to resume activities. The mine’s intricate aerodynamics can create “recirculation” 
zones, elevating toxic gas concentrations to dangerous levels. Therefore, monitoring 
cloud size, gas concentration, and downstream dispersion is crucial to enhance 
downtime efficiency and bolster safety measures. 

Presently, prevalent in use are wearable portable gas detectors worn by personnel, 
specifically designed for monitoring gas concentration levels within excavation zones 
[8]. However, these detectors lack the capacity to capture data for in-depth and 
thorough analysis. In addition, this method of surveying hazardous areas still requires 
human intervention, which poses serious health risks. Figure 2 displays certain widely 
adopted portable detectors utilized in mining, with their functionalities summarized in 
Table 2. 

      
(a) (b) (c) (d) (e) (f) 

Figure 2. Popular wearable gas detectors used in mining (models disclosed in Table 2). 

Table 2. Characteristics of portable gas detectors from Figure 2. 

Figure 2  Type Model Gas (range, resolution) Price [EUR] 

(a) single gas Drager PAC5500 CO (0–500 ppm, 1 ppm), H2S (0–100 ppm, 0.1 ppm), O2 (0–25 vol%, 0.1 
vol%) 

650 

(b) single gas Industrial Scientific 
Tango TX1 

CO (0–1000 ppm, 1 ppm), H2S (0–500 ppm, 0.1 ppm), SO2 (0–150 ppm, 0.1 
ppm), NO2 (0–150 ppm, 0.1 ppm) 

400 

(c) single gas Industrial Scientific 
Gasbadge Pro 

CO (0–1500 ppm, 1 ppm), H2S (0–500 ppm, 0.1 ppm), SO2 (0–150 ppm, 0.1 
ppm), O2 (0–30 vol%, 0.1 vol%), NO2 (0–150 ppm, 0.1 ppm), NH3 (0–500 
ppm, 1 ppm), CL2 (0–100 ppm, 0.1 ppm), CLO2 (0–1 ppm, 0.01 ppm), PH3 
(0–10 ppm, 0.01 ppm), HCN (0–30 ppm, 0.1 ppm), H2 (0–2000 ppm, 1 ppm) 

640 

(d) multigas MSA Altair 4X 
Mining 

CH4 (0–5%, 0.05%), O2 (0–30 vol%, 0.1 vol%), CO (0–1999 ppm, 1 ppm), 
NO2 (0–50 ppm, 0.1 ppm), H2S (0–200 ppm, 1 ppm) 

1600 
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Table 2. (Continued). 

Figure 2  Type Model Gas (range, resolution) Price [EUR] 

(e) multigas Honeywell BW Max 
XT II 

LEL (0–100%, 1%), O2 (0–30 vol%, 0.1 vol%), CO (0–1000 ppm, 1 ppm), 
H2S (0–200 ppm, 1 ppm) 

1200 

(f) multigas Drager X-am 5600 CO2 (0–5 vol%, 0.1 vol%), O2 (0–25 vol%, 0.1 vol%), CO (0–2000 ppm, 2 
ppm), H2S (0–200 ppm, 1 ppm) 

2000 

Reducing human factor, increasing safety, and automating production is a hot 
topic and a serious challenge in the mining industry. Nowadays, the technological 
level has reached the fourth industrial revolution (Industry 4.0), which includes 
mechatronics, the Internet of Things (IoT), and artificial intelligence (AI). That paves 
the way for the introduction of autonomous systems in mining [9]. The levels assigned 
to mining equipment are based on the Society of Automotive Engineers (SAE) 
taxonomy [10] of driving automation terms and adapted to apply to mining automation 
using the ISO 17757:2017 standard. There exist six levels of autonomy that are 
summarized in Figure 3 ([10] with additions). 

 
Figure 3. The six levels of autonomy. 

The main objective of this work, as described above, is to develop a semi-
autonomous system for atmospheric monitoring in an open-pit mine following blasting 
operations and for evaluating the potential risk of significant structural changes. Some 
of the modules of the system are built and verified in practice, while others are subject 
to future work. The proposed system presents the initial stage of ongoing research. It 
includes a device for measuring toxic gas concentrations, monitoring the direction and 
dimensions of the wind, a computer vision subsystem, and a communication 
environment allowing the transfer of the measured data in real time. The system 
architecture of the proposed platform is given in Figure 4. 

 
Figure 4. System architecture of the modular mobile monitoring device. 

Level 0
Human only

Level 1
Assistance

Level 2
Partial

autonomy

Level 3
Conditional
autonomy

Level 4
High

autonomy

Level 5
Full

autonomy

Past Present Near future Far future

Manual Semi-autonomous Autonomous

No automation. The mine 
uses manual equipment

Hybrid. The mine has manual, semi-
autonomous, and autonomous equipment

High autonomy. The mine is 
fully or mostly autonomous



Computer and Telecommunication Engineering 2024, 2(2), 2452.  

5 

The system consists of four layers. The first layer is sensory and contains the 
camera, the multi-gas sensing apparatus, and the ultrasonic anemometer, which gives 
a three-dimensional picture of the wind vector. The second layer includes the 
unmanned aerial vehicle (UAV) that carries the sensors from layer 1, which are 
connected to the microcontroller subsystem and can communicate with the third layer 
using LoRa [11] (long range) physical radio communication technique. The fourth 
layer provides several options to read, store, and further analyze the collected data. 
The proposed system architecture provides a portable yet powerful integrated sensor 
fusion-based strategy for UAV atmospheric surveillance systems that applies in open 
field environments. A use case scenario employing the above activities is illustrated 
in Figure 5a, and the modules performing data acquisition operations appear in Figure 
5b. In the same figure, the flow of data collection and processing can be seen. It 
consists in the simultaneous measurement of key atmospheric parameters, including 
the spatial wind vector, which, together with the object recognition subsystem, 
supports the automated repositioning of the UAV and data recording and transmission 
of the latter to the base station. 

  
(a) (b) 

Figure 5. (a) Example of atmosphere monitoring operation in real case situation; (b) 
block diagram of the data acquisition process. 

The proposed sensor fusion-based strategy for UAV atmospheric surveillance is 
capable of performing complex analysis of harmful substances by simultaneously 
monitoring not only several critical parameters at a time but also predicting their 
proliferation in real time and estimating the most active zones using object recognition. 
Semi-autonomous and fully autonomous monitoring systems can replace humans in 
post-blast gas toxicity monitoring in opencast mines. This is confirmed by many 
studies [12–16] where the use of UAV is proposed. However, none of these studies 
included an integrated measurement of the spatial wind vector, which can be key in 
assessing the mine atmosphere. Undoubtedly, this would improve the productivity of 
the mining enterprise and reduce the number of accidents. The authors are gradually 
implementing this novel approach in real-world settings. 

The subsequent sections of this paper are structured as follows: Chapter 2 
presents a concise comparison of gas detection sensors and proposes the structure of a 
gas measurement device. Chapter 3 elucidates the operational principles of the 3D 
ultrasonic anemometer. Chapter 4 gives insights on the computer vision subsystem, 
while Chapter 5 delineates the communication layer. Chapter 6 offers perspectives on 
potential enhancements for both the device and methodology. This section concludes 
the paper. 
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2. Gas measurement device 

Within the realm of existing gas sensor technologies, four principal categories 
can be identified [17–19], each distinguished by its underlying physical principle: 
optical sensors, mass sensors, electrochemical sensors, and thermal sensors. Optical 
sensors operate on the principle of light absorption at varying wavelengths within the 
spectrum, depending on gas properties—essentially employing spectroscopic methods. 
While highly selective, they tend to be costly, power-intensive, and voluminous. Mass 
sensors detect frequency shifts in acoustic waves caused by the absorption of 
molecules onto an oscillating structure’s surface [20]. They consume less power and 
have very high performance, high sensitivity, and fast response. Electrochemical 
sensors [21], relying on oxidation-reduction reactions with gas molecules, generate an 
electrical signal corresponding to gas concentration. These sensors exhibit high 
sensitivity, linear output, and ease of use. However, they have a limited shelf life, are 
sensitive to interferents, and may experience shortened lifespans in excessively dry or 
hot environments. Thermal conductivity-based sensors detect gas by monitoring 
temperature-induced resistance changes resulting from combustion reactions in 
catalytic materials. While offering a broad measurement range, these sensors exhibit 
non-specificity and are cross sensitive to other compounds. They do not function 
effectively with gases possessing thermal conductivities close to one (e.g., air, NH3, 
CO, NO, O2, N2), and measurements become challenging when dealing with thermal 
conductivities less than one. Despite producing a non-linear output signal, these 
sensors are cost-effective and reliable in dusty environments. In this study, the 
proposed platform accommodates electrochemical and microelectromechanical 
(MEMS) sensors. The fundamental structure of electrochemical sensors is depicted in 
Figure 6a, and the working principle of the MEMS sensors is given in Figure 6b. 

 

 

 

 

(a) (b) 

Figure 6. Basic structure, connection diagram and physical view of the electrochemical. (a) MEMS; (b) sensors. 
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types of selective membranes, electrolytes, and working electrode types depending on 
the specific kind of ambient gas. Due to their high price, limited lifetime, and the 
influence of the wind velocity on the chemical equilibrium in the sensor and thus the 
influence on the reading correctness [22], in the current study the physical experiment 
uses MEMS sensors. They are mass sensors based on a micro-hotplate. These sensors 
possess significant measurement stability and are more suitable for qualitative rather 
than quantitative measurements. 

From an electrical point of view, such a sensor can be seen as a two-resistor 
device. The RHEAT element has a resistance of about 80 Ohms with very low accuracy 
±20%) and acts as a 50 mW heater used to preheat the module before starting the 
measurement. The RMEAS resistor is the sensitive element. Connecting it in a voltage 
divider configuration allows for measuring the voltage drop across the load resistor RL 
and then obtaining a digital code with the aid of an analog to digital converter (ADC). 
The results from the experiments are given in Figure 7. They represent the verified 
static characteristics of two sensors—the Winsen GM-102B for the NO gas and the 
Winsen GM-702B for the CO gas. 

  
(a) (b) 

Figure 7. Calibration curves and error plots after the optimized polynomial approximation for the GM-102B (NO2). 
(a) and the GM-702B (CO); (b) MEMS gas sensors. 

It is expected that the computation device (the microcontroller part) will run data 
preprocessing and extensive calculations, so the coefficients in the polynomial 
approximation of the static characteristics of the gas sensors are presented using fixed-
point or integer numbers. This is done by first upscaling these coefficients by a factor 
that is a power of two and then downscaling the final result by the same factor. The 
up- and downscaling can be easily implemented with the aid of left-shift and right-
shift operations, which are quite fast. The static characteristic for the CO sensor (GM-
702) is described in two sub-ranges using two polynomials. In the range 0.2V–2.13V 
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it is given by (1), and in the range 2.13V–2.4V it is given by (2)—see Table 3. 

Table 3. Polynomial equations and their coefficients. 

No Equation Sensor Coefficients 

(1) y = a + b.x + c.x2 + d.x3  
+ e.x4 

CO—range 1 a = 17.79251, b = 121.72370, c = 269.72562, 
d = 214.64894, e = 60.53236 

NO2 a = 0.38848, b = 0.82322, c = 8.12469, d = 6.62335,  
e = 2.17539 

(2) y = a + b.x + c.x2 + d.x3  
+ e.x4 + f.x5 + g.x6 

CO—range 2 a = 1176266431, b = 3259312339, c = 3760050587, 
d = 2311641410, e = 798788991.2, f = 147098079.5, 
g = 11278154.95 

For the CO sensor, the scaling factor is 1024 in range 1 and it is 2 in range 2. The 
curve description for the NO2 sensor is given by the 4-th order polynomial (1) and has 
a single range with a scaling factor of 1024. Approximating the high-order polynomial 
with fractional coefficients by using integer coefficients leads to a negligible error—

for the nitrogen dioxide it is in the range of 6.8% to 6.6%, and for the carbon 

monoxide it is in the range of 8.4% to 0.7%. Moreover, if zeroing the highest power 
coefficients, the error remains in the same range after the scaling procedure, which 
allows further improving the computational efficiency. 

The system architecture of the independent gas sensing and data logging 
submodule is given in Figure 8. 

 
Figure 8. Basic system architecture of the independent gas sensing and data logging device. 

The design of the prototype obeys the ideas of modularity, power efficiency, 
extendibility, and reliability. It is designed to be lightweight and have high 
computational capabilities. At present, its core is built around the RP2040 
microcontroller (MCU) that has a dual-core Arm Cortex-M0+ processor with 264 kB 
of internal RAM and supports up to 16 MB of off-chip flash. Adding more sensors, 
such as anemometers, computer vision, and data analytics capabilities, presumes a 
higher computational power would be required. So attempts are made to substitute the 
RP2040 MCU with the more powerful K26 SoM that features an ARM Cortex-A53 
Quad-Core application and Cortex-R5F Dual-Core real-time processing units along 
with other high-performance hardware. The LoRa connectivity supports the AES-128 
advanced encryption standard. The gas sensing can be done either with the aid of 



Computer and Telecommunication Engineering 2024, 2(2), 2452.  

9 

electrochemical sensors (option A) or MEMS sensors (option B). The first option 
requires signal conditioning, implemented with the aid of the LMP91000 configurable 
potentiostat, which is made for low-power electrochemical cells. The measured gas 
quantities are filtered and calculated before being stored on a micro SD card and 
transmitting over the LoRa channel. The accurate position of the UAV is captured by 
the GPS and transmitted along with the data. This is especially useful for simultaneous 
localization and mapping (SLAM) algorithms and may help in case of lack of visibility. 
The second option consists of replacing the Analog Font End (AFE) and the 
electrochemical sensors with MEMS sensors. This solution has been experimented 
here because it helps in lowering the price and weight, reducing the overall complexity, 
and increasing the durability of the device. 

3. Wind measurement device 

A significant part of the working areas in mining present large volumes, and in 
such areas one-dimensional, directed air currents are rarely observed. Often the 
currents are of relatively equal magnitude in the three dimensions (x, y, and z). This is 
how hazardous gases spread in the studied areas. Local air quality and, accordingly, 
the dangerous concentration of toxic gases and mechanical harm can vary dynamically 
depending on climatic conditions. For example, the wind rose influences the direction 
of the toxic vapors (Figure 9a). 

  
(a) (b) 

Figure 9. (a) Predicted pollutant concentrations in dependence from the wind direction; (b) real measurement made 
with the aid of the 3D ultrasonic anemometer. 

The picture in Figure 9a can be modeled with software tools like ALOHA (part 
of the Computer-Aided Management of Emergency Operations (CAMEO)), TOXI + 
Risk [23], and other tools. The initial conditions of the simulation can be obtained 
easily if data on the airflow parameters are available. It can be seen from the figure 
that in “zone 1” the concentration is extremely high so that the exposure time should 
be restricted to a minimum, “zone 2” corresponds to medium concentration, and in 
“zone 3” the amount of toxic gases is relatively low. The relative boundaries of “zone 
4” surround an area where the wind can change its direction. It can be observed that 
moving away from the place of the blast demands time, which can be critical for the 
moving of mineworkers. Measurements and visualization of the spatial vector field of 
airflow in free and semi-confined space are possible with a 3D ultrasonic anemometer. 
This allows the construction of an actual velocity field by rapid multiple measurements 
in all three directions. A real measurement made with the aid of the 3D ultrasonic 
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anemometer that shows the XY velocity vectors and lines of equal velocities for a 
given elevation is shown in Figure 9b. An experiment has been conducted using the 
Young 3D ultrasonic anemometer model 81000 [24–26]. Since it lacks communication 
capabilities, a modification has been made as depicted in Figure 10. 

  

 

 

(c) 

 
(a) (b) (d) (e) 

Figure 10. The 3D ultrasonic anemometer prototype. (a) the physical device; (b) side view and orientation of the 
anemometer device; (c) the time of flight (ToF) principle (C—speed of sound, V—fluid velocity, T1, T2—ultrasound 
propagation times, L—distance between opposite transducers); (d) the implemented device; (e) block diagram of the 
main components. 

Ideally, the anemometer must face the north geomagnetic pole or a position that 
is along the tube. Next, device synchronization is performed, and measurements can 
be initiated. A comma-separated (CSV) file is created for every measurement cycle, 
and the data is saved every second. The provided information includes the latitude 
(GPS_LAT [deg]), the longitude (GPS_LON [deg]), the GPS date (GPS_DATE 
[dd/mm/yyyy]) and time (GPS_UTC_TIME [UTC hh:mm:ss]), the velocity vector in 
[m/s] for the three directions, namely U (east/west), V (north/south), and W 
(down/up), and the temperature of the air flow T [°K]. The ultrasonic wind 
measurement device aids in creating adequate predictions for the proliferation of 
hazardous substances in the atmosphere of the open-pit mine. 

4. Computer vision subsystem 

The expanding role of computer vision in autonomous control systems is evident 
in the growing demand for enhanced sensor performance, faster image processing, and 
SLAM algorithms [27–29]. Being an initial stage of an ongoing work, the proposed 
system suggests the substitution of the conventional embedded microcontroller (the 
RP2040) with a heterogeneous parallel-processing capable system. This would allow 
embedding the environment perception, processing, prediction, planning, and 
decision-making stages in a monolithic device carried by a drone. The ultimate goal is 
to achieve a fully autonomous UAV for hazardous substances monitoring and analysis 
in open field environments. Such capabilities can be achieved with the aid of the AMD 
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Zynq UltraScale+ Multi-Processing System on Chip (MPSoC) Kria System on 
Module (SoM). The high-level model of this chip [29] is given in Figure 11. 

The platform includes a field-programmable logic (FPGA) layer (PL) and 
processing (MCU) subsystem (PS). They connect with the Deep Learning Processing 
Unit (DPU) with the aid of the on-chip communication Advanced eXtensible Interface 
(AXI) bus. The DPU is a parameterizable computing engine with inherent support for 
Convolution Neural Networks (CNN) and Deep Neural Networks (DNN). The input 
data stream is preprocessed at the PL side. Then it feeds the processing system, where 
the DPU provides accelerator capabilities. 

 
Figure 11. The high-level Kria SoM system. 

The block diagram of the DPU [29] is given in Figure 12. 

 
Figure 12. Top-level block diagram of the MPSoC (left) and the DPUCZDX8G 
(right). 

The DPU (DPUCZDX8G) is an Artificial Neural Network (ANN) accelerator 
built by AMD for their Zynq-series SoC architectures. Based on a configurable PL 
core connected to the PS subsystem, it allows deploying different NN types that can 
run in parallel. It includes multiple Programmable Engines (PE) arranged in a hybrid 
computing array specifically designed for CNN applications. It necessitates 
instructions for executing NN and accessing input image locations, along with 
handling temporary data outputs. The Application Processing Unit (APU) is 
responsible for executing programs that manage interrupts and ensure coherency 
during data transfers. The business logic operates within the Linux operating system 
environment, while the accelerator blocks reside in the PL fabric. 
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(a) (b) (c) 

Figure 13. Object recognition in a video stream: (a), (b) two successive frames; (c) algorithm performance 
comparison. 

An object recognition experiment in a video stream has been done with this 
platform [30]. The results are summarized in Figure 13. Two different frames, Figure 
13a and Figure 13b, are shown in the figure. Figure 13c compares the performance 
using two algorithms—the YOLO (You Only Look Once) and the SSD (Single-Shot 
Detector). The first one runs on the ARM core, while the second one is a video stream 
accelerator that runs on the PL side. It can be seen that the use of programmable logic 
outperforms the sequential execution model provided by the microcontroller in terms 
of processing time and frames per second performance. 

5. Communication layer 

For effective information exchange within the system, meeting requirements for 
long-distance data transmission, data protection, and low power consumption is 
crucial. LoRa wireless communication, a de facto standard in the Internet of Things 
(IoT) network, fulfills these conditions. LoRa, a trademark of Semtech Corporation, 
stands for “long range” and is compatible with existing network architectures. It 
involves a trade-off between data rate and sensitivity within a fixed channel bandwidth, 
with a range exceeding 10 km. Noteworthy features include a battery life of up to 10 
years, cost-effectiveness, robust security via end-to-end AES-128 encryption, and 
capabilities for firmware updates over the air (FUOTA). LoRa is immune to 
interference from Wi-Fi, Bluetooth, GSM, LTE, etc. and boasts enhanced network 
capacity, making it an ideal choice for the proposed atmosphere-monitoring device 
(Figure 14). 
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(a) (b) 

Figure 14. (a) LoRa comparison with other wireless technologies; (b) the LoRa 
topology. 

The LoRa network allows flexible topologies such as centralized (star), 
decentralized (hybrid tree), and distributed (mesh) connections. The protocol allows 
the continued relay of real-time data in extreme conditions, such as those found in a 
mine. The above said positions the LoRa network among the best candidates for the 
mining industry and determines the choice of this wireless technology for the proposed 
prototype of the semi-autonomous mobile device for monitoring the atmosphere in 
open-pit mines. 

6. Conclusion and future development 

The paper outlines the development of a semi-autonomous mine atmosphere 
monitoring system, introducing and testing essential building blocks such as gas 
sensors and tools for spatial parameter measurement. This is an initial phase of 
ongoing research where the modular approach allows for information fusion from 
various sensors, paving the way for future advancements. Utilizing modern knowledge 
extraction methods and big data technologies, including artificial neural networks and 
machine learning, aligns with the modern trends and presents avenues for further 
exploration. The incorporation of acceleration based on heterogeneous systems, 
exemplified by the Kria SoM, emerges as a promising strategy to enhance performance 
and energy efficiency through inherent high parallelism. The study emphasizes the 
increasing demands for improved sensor performance and accelerated image 
processing algorithms in autonomous systems. It lays the foundation for future 
improvements, including the development of a fully autonomous prototype for 
hazardous substances evaluation in the atmosphere of open-field environments. 
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