
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.
Flood mapping susceptibility based on Geographic Information Systems (GIS) and the Analytic Hierarchy Process (AHP) method in Bol, Lac Province, Chad, Central Africa
Vol 3, Issue 4, 2025
Download PDF
Abstract
Climate change, a major challenge of the 21st century, is increasing the frequency and intensity of urban flooding, particularly in Sahelian cities. In Bol, in the Lac province of Chad, this dynamic has increased the frequency and intensity of flooding, making this risk a recurring threat to the city in recent years. This study aims to map the physical vulnerability (susceptibility) to flooding in the city of Bol using an integrated approach combining remote sensing, geographic information systems (GIS) and the Analytic Hierarchy Process (AHP). Eight key physical factors (precipitation, altitude, slope, land use, distance to watercourses, soil type, drainage density and flow accumulation) were analyzed and weighted using the AHP. The results show that 16.19% of Bol’s surface area is highly susceptible to flooding, and 28.08% is highly susceptible, concentrated mainly in low-lying areas and near watercourses. Surveys of 385 households confirm the recurrence of flooding and its significant impact on housing. The map produced is an essential decision-making tool for communities, decision-makers and urban stakeholders in planning actions to reduce current and future flood risks in the city of Bol. However, the lack of quantitative validation of the model is a methodological limitation, opening the door to future research incorporating uncertainty and exposure analyses.
Keywords
References
1. Deng M, Qin D, Zhang H. Public perceptions of climate and cryosphere change in typical arid inland river areas of China: Facts, impacts and selections of adaptation measures. Quaternary International. 2012; 282: 48–57. doi: 10.1016/j.quaint.2012.04.033
2. Ahmad B, Nadeem M, Hussain S, et al. People’s perception of climate change impacts on subtropical climatic region: A case study of upper indus, Pakistan. Climate. 2024; 12(5): 73. doi: 10.3390/cli12050073
3. Onus EL, Chinyio E, Daniel EI. ‘Stakeholder Perceptions’ of the impacts of climatic features on residents and residences: A UK study. Atmosphere. 2024; 15(7): 791. doi: 10.3390/atmos15070791
4. Majlingova A, Kádár TS. From Risk to Resilience: Integrating Climate Adaptation and Disaster Reduction in the Pursuit of Sustainable Development. Sustainability. 2025; 17(12): 5447. doi: 10.3390/su17125447
5. IPCC GIEC, GTII, Sixième Évaluation, Chapitre 6. 2022, Climate Change 2022: Impacts, Adaptation and Vulnerability|Climate Change 2022: Impacts, Adaptation and Vulnerability. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 26 August 2025).
6. Nguyen DN, Usuda Y, Imamura F. Gaps in and opportunities for disaster risk reduction in Urban Areas through international standardization of smart community infrastructure. Sustainability. 2024; 16(21): 9586. doi: 10.3390/su16219586
7. Blakime TH, Komi K, Adjonou K, et al. Derivation of a GIS-Based flood hazard map in Peri-Urban areas of greater Lomé, Togo (West Africa). Urban Science. 2024; 8(3): 96. doi: 10.3390/urbansci8030096
8. Ibeanu C, Ghadiri Nejad M, Ghasemi M. Developing effective project management strategy for urban flood disaster prevention project in edo state capital, nigeria. Urban Science. 2023; 7(2): 37. doi: 10.3390/urbansci7020037
9. Scolozzi R, Scolobig A, Borga M. Public support for flood risk management: insights from an Italian alpine survey using systems thinking. Geographies. 2025; 5(1): 3. doi: 10.3390/geographies5010003
10. World Health Organization Floods. Available online: https://www.who.int/health-topics/floods#tab=tab_1 (accessed on 19 December 2025).
11. Floods in the Sahel: Nearly 600 dead and people still waiting for government promises of resilient infrastructure (French). Available online: https://www.bbc.com/afrique/articles/cwy30825gxgo (accessed on 3 June 2025).
12. Djako EG, Mendy E, Ngaryamgaye S, et al. Study of the gendered impacts of climate change in Bol, Lake Province, Chad. Climate. 2024; 12(10): 157. doi: 10.3390/cli12100157
13. In Chad, the president declares a state of emergency in response to flooding (French). Available online: https://www.france24.com/fr/afrique/20221020-au-tchad-le-pr%C3%A9sident-d%C3%A9cr%C3%A8te-un-%C3%A9tat-d-urgence-face-aux-inondations (accessed on 2 June 2025).
14. Adoum AA. Organic matter and carbon storage in the soils of polders in the north-eastern Bol region of Lake Chad in the context of global changes in semi-arid environments (French). L’Institut des Sciences et Industries du Vivant et de l’Environnement (AgroParisTech): Paris; 2016.
15. Djako EG, Allarané N, Aigbavboa C, et al. Evaluation of urban planning practices in Bol city, Lake Province (Chad): Challenges and prospects. Journal of Infrastructure Policy and Development. 2025; 9(2): 11111. doi: 10.24294/jipd11111
16. D Djako EG, Aboukey G, Azianu KA, et al. Spatiotemporal dynamics and humanitarian crisis in Bol (Chad): Satellite imagery analysis. Edelweiss Applied Science and Technology. 2025; 9(5): 2923–2939. doi: 10.55214/25768484.v9i5.7617
17. Amigué SP. Lake Chad: The sons of the lake united in the face of flooding (French). Available online: https://www.alwihdainfo.com/Lac-Tchad-Les-fils-du-Lac-unis-face-aux-inondations_a135566.html (accessed on 3 June 2025).
18. Sajid T, Maimoon SK, Waseem M, et al. Integrated risk assessment of floods and landslides in kohistan, pakistan. Sustainability. 2025; 17(8): 3331. doi: 10.3390/su17083331
19. Baghermanesh SS, Jabari S, McGrath H. Urban flood detection using terra SAR-X and SAR simulated reflectivity maps. Remote Sensing. 2022; 14(23): 6154. doi: 10.3390/rs14236154
20. Sajjad A, Lu J, Chen X, et al. Rapid assessment of riverine flood inundation in Chenab floodplain using remote sensing techniques. Geoenvironmental Disasters. 2023; 10(1): 9. doi: 10.1186/s40677-023-00236-7
21. Marti-Cardona B, Lopez-Martinez C, Dolz-Ripolles J, et al. ASAR polarimetric, multi-incidence angle and multitemporal characterization of Doñana wetlands for flood extent monitoring. Remote Sensing of Environment. 2010; 114(11): 2802–2815. doi: 10.1016/j.rse.2010.06.015
22. Huang M, Jin S. Rapid Flood Mapping and evaluation with a supervised classifier and change detection in Shouguang Using Sentinel-1 SAR and Sentinel-2 optical data. Remote Sensing. 2020; 12(13): 2073. doi: 10.3390/rs12132073
23. Alarifi SS; Abdelkareem M, Abdalla F; et al. Flash flood hazard mapping using remote sensing and DIS techniques in southwestern Saudi Arabia. Sustainability. 2022; 14: 14145. doi: 10.3390/su142114145
24. Allafta, H; Opp, C. GIS-Based multi-criteria analysis for flood prone areas mapping in the trans-boundary shatt al-arab basin, Iraq-Iran. Geomatics, Natural Hazards and Risk. 2021; 12: 2087–2116. doi: 10.1080/19475705.2021.1955755.
25. Morea, H, Samanta, S. Multi-Criteria decision approach to identify flood vulnerability zones using geospatial technology in the kemp-welch catchment, central province, Papua new guinea. Appl Geomat 2020, 12, 427–440, doi:10.1007/s12518-020-00315-6.
26. Mokhtari E, Mezali F, Abdelkebir B, et al. Flood risk assessment using analytical hierarchy process: A case study from the Cheliff-Ghrib watershed, Algeria. Journal of Water and Climate Change. 2023; 14(3): 694–711. doi: 10.2166/wcc.2023.316
27. Kazakis N, Kougias I, Patsialis T. Assessment of Flood Hazard Areas at a Regional Scale Using an Index-Based Approach and Analytical Hierarchy Process: Application in Rhodope–Evros Region, Greece. Science of The Total Environment. 2015; 538: 555–563. doi: 10.1016/j.scitotenv.2015.08.055
28. Allarané N, Azagoun VVA, Atchadé AJ, et al. Urban vulnerability and adaptation strategies against recurrent climate risks in Central Africa: Evidence from N’Djaména City (Chad). Urban Science. 2023; 7: 97. doi: 10.3390/urbansci7030097
29. Abdelkerim KW, Bogaide ZE. Inondation en milieu Urbain, cas du 9ème arrondissement de la ville de N’Djaména (Cité-Capitale du Tchad). 36. https://edition-efua.acaref.net/wp-content/uploads/sites/6/2025/02/1-ABDELKERIM-Korme-Wachi.pdf.
30. Djimta R, Fourissou M, Pamdegue F, et al. « Flood risk management in the city of N’Djamena, Chad (French), contributions of remote sensing and geographic information systems». Annales de l’Université de N’Djaména 2024; 20.
31. Gbetkom PG, Crétaux JF, Tchilibou M, et al. Lake Chad vegetation cover and surface water variations in response to rainfall fluctuations under recent climate conditions (2000−2020). Science of The Total Environment. 2023; 857: 159302. doi: 10.1016/j.scitotenv.2022.159302
32. Sylvestre F, Mahamat-Nour A, Naradoum T, et al. Strengthening of the hydrological cycle in the Lake Chad Basin under current climate change. Scientific Reports. 2024; 14(1): 24639. doi: 10.1038/s41598-024-75707-4
33. Okeke-Ogbuafor N, Gray T, Ani K, et al. Proposed solutions to the problems of the lake chad fisheries: Resilience lessons for Africa? Fishes. 2023; 8(2): 64. doi: 10.3390/fishes8020064
34. Olowoyeye OS, Kanwar RS. Water and food sustainability in the riparian countries of lake chad in africa. Sustainability. 2023; 15(13): 10009. doi: 10.3390/su15131000
35. Negese A, Worku D, Shitaye A, et al. Potential flood-prone area identification and mapping using GIS-based multi-criteria decision-making and analytical hierarchy process in Dega Damot district, northwestern Ethiopia. Applied Water Science. 2022; 12(12): 255. doi: 10.1007/s13201-022-01772-7
36. Taoukidou N, Karpouzos D, Georgiou P. Flood hazard assessment through AHP, fuzzy AHP, and frequency ratio methods: A comparative analysis. Water. 2025; 17(14): 2155. doi: 10.3390/w17142155
37. Koroma AO, Saber M, Abdelbaki C. Urban flood vulnerability assessment in Freetown, Sierra Leone: AHP Approach. Hydrology. 2024; 11(10): 158. doi: 10.3390/hydrology11100158
38. Oyedele P, Kola E, Olorunfemi F, et al. Understanding flood vulnerability in local communities of Kogi state, Nigeria, using an index-based approach. Water. 2022; 14: 2746. doi: 10.3390/w14172746
39. Sarker S, Jahan I, Wang X, et al. Geospatial approach to assess flash flood vulnerability in a coastal district of bangladesh: integrating the multifaceted dimension of vulnerabilities. ISPRS International Journal of Geo-Information. 2025; 14(5): 194. doi: 10.3390/ijgi14050194
40. Aichi A, Ikirri M, Ait Haddou M, et al. Integrated GIS and analytic hierarchy process for flood risk assessment in the dades wadi watershed (central high atlas, morocco). Results in Earth Sciences. 2024; 2: 100019. doi: 10.1016/j.rines.2024.100019
41. Ikirri M, Faik F, Echogdali FZ, et al. Flood hazard index application in arid catchments: case of the taguenit wadi watershed, lakhssas, morocco. Land. 2022; 11(8): 1178. doi: 10.3390/land11081178
42. Shrestha S, Dahal D, Poudel B, et al. Flood susceptibility analysis with integrated geographic information system and analytical hierarchy process: A multi-criteria framework for risk assessment and mitigation. Water. 2025; 17(7): 937. doi: 10.3390/w17070937
43. Tarhule A. Damaging rainfall and flooding: the other sahel hazards. Climatic Change. 2005; 72(3): 355–377. doi: 10.1007/s10584-005-6792-4
44. Mojaddadi H, Pradhan B, Nampak H, et al. Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics, Natural Hazards and Risk. 2017; 8(2): 1080–1102. doi: 10.1080/19475705.2017.1294113
45. Barboza TOC, Ferraz MAJ, Pilon C, et al. Advanced farming strategies using NASA POWER data in peanut-producing regions without surface meteorological stations. AgriEngineering. 2024; 6(1): 438–454. doi: 10.3390/agriengineering6010027
46. Tóth B, Weynants M, Pásztor L, et al. 3D soil hydraulic database of Europe at 250 m resolution. Hydrological Processes. 2017; 31(14): 2662–2666. doi: 10.1002/hyp.11203
47. Mahmoud SH, Gan TY. Multi-criteria approach to develop flood susceptibility maps in arid regions of middle east. Journal of Cleaner Production. 2018; 196: 216–229. doi: 10.1016/j.jclepro.2018.06.047
48. Mahmoud, SH; Gan, TY. Multi-Criteria approach to develop flood susceptibility maps in arid regions of middle east. Journal of Cleaner Production 2018; 196: 216–229, doi: 10.1016/j.jclepro.2018.06.047.
49. Komi, K. Physical flood vulnerability mapping using the analytical hierarchy process method and geography information system: application to the savannah region, TOGO (West Africa), International Roundtable on the Impact of Extreme Natural Events: Science and Technology for Mitigation; 2017.
50. Senanou G, Ayarema A, Samah ODE, et al. Projection on intensity duration frequency curves in a context of climate change in the city of Lomé (West Africa). IJAR. 2019; 7: 678–692. doi: 10.21474/IJAR01/9271
51. Chowdhuri I, Pal SC, Chakrabortty R. Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of Eastern India. Advances in Space Research. 2020; 65: 1466–1489. doi: 10.1016/j.asr.2019.12.003
52. Rimba AB, Chapagain SK, Masago Y, et al. Investigating water sustainability and land use/land cover change (LULC) as the impact of tourism activity in bali, indonesia. IGARSS 2019 - 2019 IEEE international geoscience and remote sensing symposium. IEEE. 2019: 6531–6534. doi: 10.1109/igarss.2019.8900060
53. Canco I, Kruja D, Iancu T. AHP, a reliable method for quality decision making: A case study in business. Sustainability. 2021; 13(24): 13932. doi: 10.3390/su132413932
54. Saaty TL, Vargas LG. Inconsistency and rank preservation. Journal of Mathematical Psychology. 1984; 28: 205–214. doi: 10.1016/0022-2496(84)90027-0
55. Bozóki S, Fülöp J. Efficient weight vectors from pairwise comparison matrices. European Journal of Operational Research. 2018; 264(2): 419–427. doi: 10.1016/j.ejor.2017.06.033
56. Wu J, Chen X, Lu J. Assessment of long and short-term flood risk using the multi-criteria analysis model with the AHP-Entropy method in Poyang Lake basin. International Journal of Disaster Risk Reduction. 2022; 75: 102968. doi: 10.1016/j.ijdrr.2022.102968
57. Rahmati O, Zeinivand H, Besharat M. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics, Natural Hazards and Risk. 2015; 7(3): 1000–1017. doi: 10.1080/19475705.2015.1045043
58. Tombar PA. Abdou KD, Vidjinnagni VAA, et al. Spatial organisation of housing and factors influencing residential choice in the town of bol, lake province, chad. Journal of Building Material Science. 2025; 7(2): 58–79. doi: 10.30564/jbms.v7i2.9374
59. UN-Habitat: Nairobi. The State of African Cities 2014: Re-Imagining Sustainable Urban Transitions. The State of African Cities. UN-Habitat: Nairobi; 2014.
60. Adger WN, Barnett J, Brown K, et al. Cultural dimensions of climate change impacts and adaptation. Nature Climate Change. 2012; 3(2): 112–117. doi: 10.1038/nclimate1666
61. Satterthwaite D, Archer D, Colenbrander S, et al. Building resilience to climate change in informal settlements. One Earth. 2020; 2(2): 143–156. doi: 10.1016/j.oneear.2020.02.002
62. Dossoumou NIP, Gnazou MDT, Villamor GB, et al. Comparing households’ perception of flood hazard with historical climate and hydrological data in the lower mono river catchment (West Africa), Benin and Togo. PLOS Clim. 2023; 2: e0000123. doi: 10.1371/journal.pclm.0000123
63. Kumaresen M, Teo FY, Selvarajoo A, et al. Assessing community perception, preparedness, and adaptation to urban flood risks in Malaysia. Water. 2025; 17(15): 2323. doi: 10.3390/w17152323
64. Gbobaniyi E, Sarr A, Sylla MB, et al. Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. International Journal of Climatology. 2013; 34(7): 2241–2257. doi: 10.1002/joc.3834
65. Klassou KS. Human influence on the origin and severity of flooding in Togo: The case of land use planning in the northern suburbs of Lomé (Togblé-Adétikopé) (French). Revue de Géographie Tropicale et d’Environnement; 2014.
66. Mishra, K; Sinha, R. Flood Risk Assessment in the Kosi Megafan using multi-criteria decision analysis: A Hydro-Geomorphic Approach. Geomorphology. 2020; 350: 106861. doi: 10.1016/j.geomorph.2019.106861.
67. Lyu HM, Sun WJ, Shen SL, et al. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Science of The Total Environment. 2018; 626: 1012-1025. doi: 10.1016/j.scitotenv.2018.01.138
68. Quesada-Román A. Flood risk index development at the municipal level in Costa Rica: A methodological framework. Environmental Science & Policy. 2022; 133: 98–106. doi: 10.1016/j.envsci.2022.03.012
69. Al-Rawas G, Nikoo MR, Al-Wardy M. A review on the prevention and control of flash flood hazards on a global scale: Early warning systems, vulnerability assessment, environmental, and public health burden. International Journal of Disaster Risk Reduction. 2024; 115: 105024. doi: 10.1016/j.ijdrr.2024.105024
70. Bafahm A, Sun M. Some conflicting results in the analytic hierarchy process. International Journal of Information Technology & Decision Making. 2019; 18(02): 465–486. doi: 10.1142/s0219622018500517
71. Munier, N.; Hontoria, E. Shortcomings of the AHP Method. In uses and limitations of the AHP method; Management for professionals; Springer International Publishing: Cham; 2021. pp. 41–90.
72. Shuaibu A, Hounkpè J, Bossa YA, et al. Flood risk assessment and mapping in the Hadejia River Basin, Nigeria, Using Hydro-Geomorphic approach and multi-criterion decision-making method. Water. 2022; 14(22): 3709. doi: 10.3390/w14223709
73. Makkulawu AR, Soemarno, Santoso I, et al. Exploring the potential and benefits of AHP and GIS integration for informed decision-making: A literature review. Ingénierie des systèmes d information. 2023; 28(6): 1701–1708. doi: 10.18280/isi.280629
74. Kienberger S, Lang S, Zeil P. Spatial vulnerability units–expert-based spatial modelling of socio-economic vulnerability in the Salzach catchment, Austria. Natural Hazards and Earth System Sciences. 2009; 9(3): 767–778. doi: 10.5194/nhess-9-767-2009
75. Malczewski J. GIS‐based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science. 2006; 20(7): 703–726. doi: 10.1080/13658810600661508
76. Feizizadeh B, Shadman Roodposhti M, Jankowski P, et al. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Computers & Geosciences. 2014; 73: 208–221. doi: 10.1016/j.cageo.2014.08.001
77. Merz B, Kreibich H, Schwarze R, et al. Review Article " Assessment of Economic Flood Damage & quot; Nat. Hazards and Earth System Science. 2010; 10: 1697–1724. doi: 10.5194/nhess-10-1697-2010
78. Rehman A, Song J, Haq F, et al. Multi-Hazard susceptibility assessment using the analytical hierarchy process and frequency ratio techniques in the northwest himalayas, Pakistan. Remote Sensing. 2022; 14(3): 554. doi: 10.3390/rs14030554
79. Halder B, Barman S, Banik P, et al. Large-scale flood hazard monitoring and impact assessment on landscape: Representative case study in India. Sustainability. 2023; 15(14): 11413. doi: 10.3390/su151411413
Supporting Agencies
Regional Centre of Excellence on Sustainable Cities in Africa (CERViDA-DOUNEDON); Association of African Universities; World Bank Group
Copyright (c) 2026 Parfait Altolnan Tombar, Abdou Kailou Djibo, Kossi Komi, Abdelkerim Ramadan, François Teadoum Naringué, Pierre Bassena, Komi Selom Klassou

This work is licensed under a Creative Commons Attribution 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Prof. Kittisak Jermsittiparsert
University of City Island, Cyprus






It is with deep regret that we announce the cancellation of the Forum on Sustainable Social Development & Computing and Artificial Intelligence, originally scheduled for June 15, 2025.
