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Abstract: Climate change, a major challenge of the 21st century, is increasing the frequency
and intensity of urban flooding, particularly in Sahelian cities. In Bol, in the Lac province of
Chad, this dynamic has increased the frequency and intensity of flooding, making this risk a
recurring threat to the city in recent years. This study aims to map the physical vulnerability
(susceptibility) to flooding in the city of Bol using an integrated approach combining remote
sensing, geographic information systems (GIS) and the Analytic Hierarchy Process (AHP).
Eight key physical factors (precipitation, altitude, slope, land use, distance to watercourses, soil
type, drainage density and flow accumulation) were analyzed and weighted using the AHP.
The results show that 16.19% of Bol’s surface area is highly susceptible to flooding, and 28.08%
is highly susceptible, concentrated mainly in low-lying areas and near watercourses. Surveys
of 385 households confirm the recurrence of flooding and its significant impact on housing.
The map produced is an essential decision-making tool for communities, decision-makers and
urban stakeholders in planning actions to reduce current and future flood risks in the city of
Bol. However, the lack of quantitative validation of the model is a methodological limitation,
opening the door to future research incorporating uncertainty and exposure analyses.

Keywords: flood vulnerability; Geographic Information System (GIS); Analytic Hierarchy
Process (AHP); remote sensing; Bol; lake (chad)

1. Introduction

Climate change is no longer an unfamiliar term [1]. Today, it is one of the greatest
challenges facing humanity, as it increases the frequency and intensity of extreme
events such as droughts, floods, etc. [2—4]. On a global scale, these
hydrometeorological phenomena cause significant human losses, considerable
material damage and lasting degradation of socio-economic systems, particularly
affecting urban infrastructure and housing [3,5]. These findings show that
communities around the world are becoming increasingly vulnerable to natural
disasters and climate change, and according to the World Bank, approximately 50% of
the world’s population lives in areas exposed to natural hazards [6].

Floods, characterised by the submersion of normally dry areas, are one such risk
[7]. They are among the most frequent and devastating climate hazards worldwide
[8,9]. Between 1998 and 2017, they affected more than 2 billion people [10], with a
notable increase in their frequency and intensity in tropical and Sahelian regions. In
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Central and West Africa, the floods of 2024 caused massive destruction of housing
(300,000 homes), forced the displacement of millions of people, and significantly
worsened living conditions, revealing the high vulnerability of cities to flooding [11].
Chad, regularly ranked among the countries most vulnerable to climate change [12],
is a prime example of this situation, with major floods in recent years affecting the
population and prompting the Chadian government to declare a national state of
emergency in 2022 [13].

In this national context, the town of Bol, located on the southern shore of Lake
Chad, is a particularly relevant case study. Its location in a low-lying plain, dominated
by hydromorphic and alluvial soils, promotes water stagnation during the rainy season
[14]. The lake, which recedes or overflows depending on the season, causes recurrent
flooding that affects the riparian areas. This physical vulnerability is exacerbated by
sustained population growth, the arrival of displaced populations, and rapid,
unplanned urbanisation, which has led to the occupation of low-lying, flood-prone
areas [14-16]. Recurrent flooding in Lac Province, particularly in 2024, affected
102,145 households, left 71,070 people homeless, led to the destruction of 72,586
homes and 76,712 hectares of crops, caused the loss of 51,686 head of livestock and
resulted in 43 deaths [17], highlighting the urgent need for decision-making tools
adapted to the local context.

Conceptually, it is essential to clearly distinguish between flood hazard,
vulnerability and risk. Flood risk is generally defined as the result of the combination
of hazard, exposure and vulnerability. This study focuses specifically on assessing
physical vulnerability, also referred to as flood susceptibility, understood as the
intrinsic propensity of an area to be affected by flooding based on its hydro-
geomorphological, pedological and environmental characteristics.  This
methodological choice is motivated by the availability of spatial data and the need to
produce operational mapping at the urban scale, while recognising that exposure and
adaptive capacity are complementary dimensions of overall risk.

Hazard mapping is an essential risk management tool, enabling the identification
of areas likely to be exposed to various types of hazards, the planning of mitigation
and adaptation measures, and the improvement of disaster preparedness, response and
recovery [18]. There is no longer any doubt about the need for decision-making tools
to assess a city’s flood susceptibility. Numerous studies have shown that remote
sensing and geographic information systems (GIS) can be combined to map flood risk
[7]. Remote sensing is useful for obtaining high-resolution images of flooded areas
[19,20]. However, optical imaging has its limitations in detecting flooded areas when
they are covered by dense vegetation or when the sky is very cloudy at the time of
flooding [21,22]. These limitations compromise the accuracy of observation and
mapping of affected areas [22]. The integration of remote sensing data into GIS is the
most widely used method for mapping flood risks [7]. Numerous studies worldwide
have used a combination of GIS methods and multi-criteria decision analysis (MCDA)
to characterise flood hazards with high accuracy [18,7,23,24]. Among MCDA
methods, the Analytic Hierarchy Process (AHP) has proven effective in mapping flood
vulnerability [7,25]. AHP is a decision-making framework that helps prioritise and
select the best option by breaking down a complex decision into a hierarchy of
objectives, criteria and alternatives [26]. The AHP method improves decision-making
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by providing clearer visualisation and enhanced mapping capabilities, thereby
facilitating the development of hazard maps [18].

Previous studies, such as those in [7], have combined remote sensing data, GIS
methods, and the Analytic Hierarchy Process (AHP) to map flood susceptibility in
peri-urban areas of Greater Lomé, Togo. Kazakis et al. [27] used a multi-criteria
methodology in the Rhodope—Evros region of Greece to identify flood-prone areas at
the regional scale, combining spatial data in a GIS environment with the Analytic
Hierarchy Process (AHP). And Sajid et al. [ 18] assessed the combined risks of flooding
and landslides in the Kohistan district of northern Pakistan, a mountainous region
highly vulnerable to natural hazards, using an integrated approach combining GIS,
AHP and remote sensing. Their results show that 77% of the district is at high risk of
flooding, while 30.5% is at high risk of landslides. Nevertheless, this work also
highlights the highly contextual nature of the results, which depend on the factors
selected, the weightings assigned and local hydro-geomorphological specificities.
Consequently, the direct transposition of models from one territory to another remains
limited and requires methodological adaptations.

In the context of Chad, research on flooding has mainly focused on socio-
economic impacts, adaptation strategies or work in certain large cities, particularly
N’Djamena [28—30]. In Bol, existing work on vulnerability to climate risks has mainly
focused on the agricultural, fishing and pastoral sectors, as well as on cross-cutting
issues such as migration and gender, leaving little room for analysis of urban
vulnerability to flooding [12,31-33]. To our knowledge, no study has yet proposed an
integrated flood susceptibility map combining remote sensing data, GIS analysis, the
AHP method and field surveys at the scale of the city of Bol.

Considering these findings, this study aims to fill a scientific and operational gap
by advancing traditional flood-mapping approaches based on GIS and the Analytic
Hierarchy Process (AHP). Unlike previous studies, which were often limited to purely
physical modelling and large-scale analyses, this research adopts a broader
methodological approach combining remote sensing data, GIS analysis, AHP and
georeferenced field surveys, enabling the results of the susceptibility model to be
compared with empirical observations from affected households. The analysis is
conducted at the fine scale of a secondary Sahelian city, Bol, with homogeneous spatial
resolution, highlighting intra-urban heterogeneities that have been little explored in
previous GIS-AHP studies. Finally, the explicit linking of the susceptibility map with
the built-up area and the distribution of affected households makes the study highly
relevant for decision-making, providing a tool that can be directly used for urban
planning, risk management and the orientation of local adaptation strategies.

The study focuses on the following research question: How do physical factors
interact to shape the spatial distribution of flood susceptibility in the city of Bol? The
main objective is to map physical flood susceptibility using an integrated GIS-AHP
approach. More specifically, the study seeks to: (i) analyse local populations’
perceptions of rainfall and flood recurrence; (ii) prioritise the physical factors
contributing to flood vulnerability using the Analytic Hierarchy Process; and (iii)
produce a susceptibility map to support urban planning, risk management and the
development of local adaptation strategies in the city of Bol.
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2. Materials and methods

2.1. Study area

This study is being conducted in the town of Bol, located on the shores of Lake
Chad, 153 km north of the capital, in the Sahelian zone of Chad, between 13°27°31”
north latitude and 14°42°53” east longitude (Figure 1). The town of Bol is strategically
located because it borders Nigeria, Niger, and Cameroon. It also benefits from an arid
climate and a large surface water basin known as the “arm of Lake Chad”, an endorheic
lake [12,34]. It is also located on a plain of hydromorphic soils, including lacustrine
alluvial soils, sandy-clay soils, alluvial soils, sandy-beige to sandy-clay soils and
tropical black clays [14]. The city is located within a very active trade network,
distinguished by an economy based mainly on primary sector activities, where its

economic importance is reinforced by substantial agricultural production from the
Lake Chad polders [16].
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Figure 1. Geographical location of the study area.

Figure 2 shows the ombrothermic curve for the city of Bol and highlights a highly
contrasting climate seasonality. The dry season, particularly marked from January to
March, is characterised by almost total rainfall absence (0 mm), while the rainy season
lasts from May to September, with maximum rainfall in August (136 mm).
Temperatures peak in May (44.6 °C) before the rains set in, while average monthly
temperatures range from 23.4 °C in January to 34.3 °C in May.
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Figure 2. Ombrothermic diagram of the city of Bol, based on average monthly
temperature and precipitation data from 1982 to 2022. Source: Synoptic data
collected from the national meteorological agency (ANAM), 2024.

2.2. Data used

Table 1 shows all the data used in this study, which comes from remote sensing
products and fieldwork.

Table 1. The various data used in this study.

Data type Descriptions Sources
Digital elevation  Field-corrected radiometric https://www.earthdata.nasa.gov/data/projects/alos-palsar-rtc-project (accessed on 14 July
model data 2025)
Sentinel-2 ima Land use and land cover data  https://livingatlas.arcgis.com/landcoverexplorer/#mapCenter=14.48797%2C13.40043%2
entine €% for the year 2024 C10.71&mode=step&timeExtent=2017%2C2021&year=2024 (accessed on 15 July 2025)
Soil Grids soil map developed
Soil data by ISRIC-World Soil https://soilgrids.org/ (accessed on 17 September 2025)
Information
Continental-scale daily rainfall
. estimates for 2001-2024 from ) .
Rainfall data the Famine Early Warning https://power.larc.nasa.gov/data-access-viewer/ (accessed on 22 July 2025)
Systems Network project
Data on the 2024  Field data on households . .
floods affected by the 2024 floods Ficldwork in 2024

2.3. Selection of criteria

The criteria were selected based on their contribution to the genesis of flooding
in the study area and on their recurrent use in previous scientific literature employing
the same methods. Table 2 summarises the main previous studies cited as references.
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Table 2. Summary of previous studies using the same method.

Parameters Number of criteria  Methods Study area References
Altltude, slope, dlstgnce to a watercourse, rainfall AHP, GIS, Remote ) Blakime et al.,
intensity, accumulation flow, land cover/land use, 7 : Grand Lomé (Togo)
. Sensing 2024 [7]
soil type.
Slope, curvature, land cover/land use, altitude,
distance to a watercourse, soil type, Normalised AHP, GIS, Remote Kohistan (Pakistan) Sajid et al.,
Difference Vegetation Index (NDVI), precipitation, Sensing 2025 [18]
Topographic Wetness Index (TWI).
Slope, Qralnage d ensity, soil type, isohyet, AHP, GIS, Remote Abidjan (Cote Danumah et
population density, land cover/land use and 6 ’ ye o
. Sensing d’ivoire) al., 2016 [35]

sewerage system density.
Altitude, slope, surface curvature, Topographic
Wetness Index (TWI), Stream Power Index (SPI), 9 AHP, GIS, Remote Sud-Ouest de Alarifi et al.,
precipitation, depressions, drainage density, and Sensing I’ Arabie Saoudite 2022 [24]
distance to a watercourse.
Precipitation, distance to a wat.ercourse, a}tltudg, AHP, GIS, Remote Bassin de Shatt Al- Allafta et al,
slope, land cover/land use, drainage density, soil 8 ’

. Sensing Arab (Irag-Iran) 2021 [24]
type, lithology.
Land cover/land use, altitude, slope, surface runoff, AHP, Weighted Linear Bassin de Kemp-

. S . LS . Morea et al.,
distance to a watercourse, precipitation, soil 9 Combination (WLC), Welch (Papouasie- 2020 [25]
texture, soil drainage, and relief. GIS, Remote Sensing Nouvelle-Guinée)

Elevation, slope, drainage density, distance to a
wate'rcourse, topQgraphlc Wetness 1nd§x .(TWI), AHP, GIS, Remote Bass¥n versgnt de Mokhtari et
modified normalised water index, precipitation, 9 Sensin Cheliff-Ghrib al., 2023 [26]
normalised difference vegetation index (NDVI), & (Algérie) ?
and lithology.
P.re01p1tat10n, slope, flow accumulation, elevathn, AHP, GIS, Remote Rhodope-Evros Kazakis et al.,
distance to watercourse, land cover/land use, soil 7 ’ \
type Sensing (Grece) 2015 [27]
Precipitation, normalised difference vegetation
index, dral.nage d ensﬁy, flow accurpulatlon, AHP, GIS, Remote District de Dega Negese et al.,
topographic moisture index, elevation, slope, 11 Sensin Damot, (Ethiopic) 2022 [36]
curvature, distance to watercourse, soil type, land & ’ P
use/land cover.
Precipitation, slope, land use/ land cover, drainage
density, distance to road, topographic Wetness 9 AHP, GIS, Remote Freetown (Sierra Koroma et al.,
index, distance to watercourse, normalised Sensing Leone) 2024 [37]
difference vegetation index, and altitude.
Altitude, slope, normalised differential vegetation
1nd§x (NDVI).’ lanq use/land cover, .SOII pe, AHP, GIS, Remote Comté de Davidson  Shrestha et al.,
drainage density, distance to road, distance to 10 : .
S . Sensing (Etats-Unis) 2025 [38]
watercourse, precipitation, topographic Wetness
index (TWI).
Flow accumulation, slope, distance to a L.
watercourse, drainage network density, land use/ 7 AHPT GIS, Remote Dades Wadi (Maroc) Aichi et al,,
.o T Sensing 2024 [39]
land cover, precipitation, and permeability.
Flow accumulation, distance to a watercourse, . . .
drainage network density, precipitation, slope, land 7 AHP, GIS, Remote Taguenit Wadi Ikirri et al.,
> ’ ’ Sensing (Maroc) 2022 [40]

use/ land cover, and permeability.

Following a review of the literature on flood mapping studies using GIS
approaches and the Analytic Hierarchy Process (AHP), supplemented by an analysis
of specific studies in the study area, observations from fieldwork, and consideration
of data availability and quality, eight (8) physical factors determining the genesis of
floods were selected and ranked. These factors were chosen for their documented role
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in flood dynamics and their relevance to the city of Bol’s hydro-geomorphological
context.

Rainfall intensity is the most influential factor in this study, carrying the highest
weight in the flood susceptibility analysis. Floods are intrinsically linked to rainfall,
whose intensity and duration directly determine the volume of water generated,
surface runoff and soil saturation [36,41]. Regions receiving heavy rainfall are
therefore more prone to flooding than those with low rainfall [37]. In the context of
Bol, which is characterised by highly seasonal rainfall, this factor plays a central role
in flooding.

Altitude appears to be the second most important factor. Low-lying areas are
generally more vulnerable because they receive and accumulate runoff from higher
areas [24,42]. As the city of Bol is located on a low-lying plain, slight variations in
altitude are sufficient to cause water stagnation and the spatial expansion of flooded
areas, underscoring the importance of this parameter.

The terrain slope ranks third among the factors analysed. It directly influences
runoff and infiltration processes. Areas with gentle slopes promote water accumulation
and stagnation, thereby increasing susceptibility to flooding, while steeper slopes
induce rapid runoff that can lead to flash floods and locally more destructive flooding
[39,40,43]. In the Bol plain, characterised by very gentle slopes, this factor
significantly contributes to flood risk.

The fourth factor for mapping flood susceptibility is land use and land cover
(LULC). These contribute to flooding by influencing infiltration and runoff. Urbanised
areas limit infiltration and increase runoff, thereby increasing the risk of flooding [38].
Conversely, dense vegetation cover promotes infiltration and reduces this risk [36,40].
In the Sahelian context, as in Bol, populations attribute flooding to land-use changes
[44], confirming that LULC is an important physical factor in identifying vulnerable
areas [7].

Distance from waterways is also considered the fourth factor in flood risk
assessment, as areas located near the hydrographic network act as floodplains during
heavy rainfall and are therefore the most vulnerable, while the danger decreases with
distance [38,41]. Several studies show that populations living near watercourses are
particularly exposed to flooding and overflowing [40,43], a situation frequently
observed in the low-lying neighbourhoods of Bol.

Soil type plays an important role in flood dynamics due to its physical properties,
such as texture, permeability, and structure, which directly influence drainage,
infiltration, and surface runoff [45]. The hydromorphic and low-permeability soils in
Bol limit infiltration and promote water stagnation, thereby increasing the risk of
flooding.

The density of the drainage network is also considered in assessing physical
vulnerability to flooding, as it directly influences runoff, flow rates and erosion
potential. Areas with high drainage density quickly concentrate runoff and are often
more prone to flooding, particularly during heavy rainfall [38]. In Bol, the natural and
artificial drainage network significantly affects the spread of water during high-water
periods.

Finally, flow accumulation is also a relevant criterion in identifying flood-prone
areas. This parameter has often been used in numerous previous studies [36,42]. It
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represents the volume of water drained from upstream cells into a given cell, thereby
influencing flow concentration and flood risk [40], particularly in low-slope areas such
as Bol.

2.4. Methods

Several types of data and different methodologies were used in this study. On the
one hand, an analytical approach based on physical factors was used to map flood
susceptibility, structured in seven main steps: (i) data collection and preparation
(precipitation, DTM, land use, soils, hydrography); (ii) harmonisation of data within a
single coordinate system and division of the study area; (iii) derivation of
topographical and hydrological variables (slope, flow accumulation, drainage density,
distance to watercourses); (iv) normalisation/reclassification of each factor into
ordinal susceptibility classes; (v) estimation of weights using the Analytic Hierarchy
Process (AHP); (vi) weighted linear combination (WLC) to produce the susceptibility
index and map; (vii) validation by comparison with field data and spatial consistency
analysis of affected households. In addition, a quantitative approach using
questionnaires administered to households was used to gather information on
households’ perceptions of flooding.

2.4.1. Methodology for developing the flood susceptibility map

The flood susceptibility map was developed by integrating remote sensing data
and geographic information systems (GIS) and applying the AHP approach [7,40]. The
hydro-geo-morpho-climatic data layers, namely land use and land cover, distance from
watercourses, precipitation, drainage network density, soil infiltration rate, flow
accumulation, slope and altitude, were generated using GIS and remote sensing
techniques from spatial data collected from various sources.

Preparation of data relating to flood factors

In this study, eight (8) determinants of flood risk were selected based on the
specific characteristics of the study area, data availability, and previous studies on
flood risk [7,23,39,40,42]. These factors include precipitation, altitude, slope, land use
and land cover, distance from watercourses, soil infiltration rate, drainage network
density and flow accumulation. In this study, the precipitation index was chosen to
represent precipitation in the study area, and it was calculated using the Modified
Fournier Index (MFI) with Equation (1) [7,41]:

12 plz
MFI = Zizl > (1)
where FMI is the Modified Fournier Index, i is the month, P; is the monthly average
rainfall (mm), and P is the average annual rainfall (mm).

To map rainfall, daily precipitation data from 2001 to 2024 were downloaded
from the POWER (Prediction of Worldwide Energy Resources) project database, a
NASA (Langley Research Centre) initiative that makes ready-to-use meteorological
data accessible [46]. This data was imported and processed using QGIS software
(version 3.34.12). Land use and land cover (LULC) information was extracted from
Sentinel-2 images using supervised classification with QGIS software (version
3.34.12), while the soil type map was generated by classifying the soil type layers of
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the Harmonised Global Soil Data (HGS) provided by Soil Grids, a global digital soil
mapping system developed by ISRIC-World Soil Information, using QGIS software
(version 3.34.12) [47]. The elevation and slope maps were derived from the Digital
Terrain Model (DTM) of the study area, while the flow accumulation map was
generated after filling in the DTM map of the study area to create the flow direction
map from the Digital Terrain Model (DTM) using QGIS software. The distance-to-
watercourse map was generated using the buffer tool in the GIS environment,
accounting for existing hydrographic networks. Areas within 200 m of the
hydrographic network were considered particularly vulnerable to flooding, in line with
previous studies [7,48].

It should be noted that the maps of the eight (8) flood hazard factors were
reclassified to the same scale, ranging from 1 (very low) to 5 (very high), and then
resampled to a 10 m spatial resolution. The factor classes, including distance to the
hydrographic network, altitude, and precipitation, were generated using the natural
breaks method, as in previous studies, because it is useful for assigning labels to an
ordinary scale [7,49]. Land use and land cover (LULC) classes were obtained from
[50], while slope and soil infiltration rate classes were estimated as suggested by
[51,52], respectively. Due to the diversity of data spatial resolutions used in this study,
a resampling process was applied to harmonise the image resolutions from different
sources. This step, which is essential in the processing of spatial data, ensures the
consistency and homogeneity of information, which is a prerequisite for reliable and
comparable analyses. The bilinear method was chosen for resampling because it
preserves visual continuity while ensuring smooth data integration. It estimates the
value of new pixels by calculating a weighted average of their neighbouring pixels,
which provides more consistent and accurate results when harmonising spatial
resolutions.

The Digital Terrain Model (10 m) resolution was used as a reference to adjust the
resolutions of the other images. The 10 m spatial resolution was chosen to address
heterogeneity in data resolution, which required standardisation to ensure consistent
integration into the multi-criteria analysis. This resolution is particularly suited to the
analysis of intra-urban heterogeneities in the city of Bol, where slight topographical
variations cause water stagnation. It is also consistent with the resolution of the main
spatial data used. Continuous variables were resampled using bilinear interpolation,
while categorical variables were processed using the nearest neighbour method to limit
spatial bias.

Use of the AHP method

Given that the various flood factors do not have equal importance in the flood
generation process, Saaty’s Hierarchical Analysis Method (AHP) was applied to
estimate the relative weights of each factor [7,53]. This multi-criterion decision-
making method, based on pairwise comparison matrices, enables the determination of
the relative importance of each criterion and the selection of the most relevant options
[53]. This decision-making method has the advantage of incorporating a consistency
test, thereby reducing uncertainty in the weighting process, which explains its use in
several previous studies [7,39,40,42]. The relative importance of the criteria is
estimated on a scale of 1 to 9, from 1 (least important) to 9 (most important) (Table
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3).

As part of this study, a panel of five experts was assembled, comprising
specialists in GIS/remote sensing, hydrology/hydraulics, geomorphology/paedology,
urban planning/risk management, and architecture/urban planning, with an average of
5 years of professional experience. Each expert completed a pairwise comparison
matrix on the Saaty scale (1-9). The individual matrices were aggregated by geometric
mean to obtain a consensus matrix, in accordance with AHP methodological
recommendations. The final weights were calculated from the principal eigenvector
and normalised to sum to 1.

Table 3. Importance scales used in the pairwise comparison matrix [7,54].

Intensity of importance Definition Description

1 Equal importance Two criteria contribute equally to the objective

3 Moderate importance  Experience and judgement favour one slightly over the other

5 High importance Experience and judgement strongly favour one over the other

7 Very high importance  Experience and judgement strongly favour one criterion over another

9 Extreme importance ~ The evidence in favour of one criterion over another is of the highest possible validity.
2,4,6,8 Intermediate values When agreement is necessary.

To calculate the weights of each parameter, AHP begins by creating a pairwise
comparison matrix (M = (By)) [7,54]. Each numerical value of M represents the
relative importance of parameter i compared to parameter j. If B; > 1, parameter i is
more important than parameter j, while if B; < 1, parameter i is less important than
parameter j. If both parameters have the same importance, then B; = 1. The
mathematical values satisfy the condition given in Equation (2):

After developing the comparison matrix and defining the weights of the factors,
the Consistency Ratio (CR) was calculated according to Equation (3) proposed by
[54]:

CI

CR = i 3)

where CI is the Consistency Index, and RI is the Random Index, whose value depends
on n, which is the number of criteria (factors). The value of the Consistency Index (CI)
was obtained using Equation (4):

A —
1 — max n ( 4)

n—1
where 4 max represents the largest eigenvalue of the matrix and n represents the
number of parameters. The Random Index (RI) constant depends on 7 (Table 4). When
RC < 0.1, the assessment is consistent and reliable results can be expected from the

AHP model.

10
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Table 4. Random index for calculating the consistency rate [7,54].

3

4

5 6 7 8 9 10 11 12 13

0,58

0,90

1,12 1,24 1,32 1,41 1,45 1,49 1,51 1,48 1,56

Development of the flood susceptibility index model

The Flood Hazard Index (FHI) model proposed in this study accounted for eight (8)
factors: precipitation, altitude, slope, land use and land cover, distance to watercourses,
soil infiltration rate, drainage network density, and flow accumulation. Based on the
estimated weights of these different factors and their scores (Table 4), the Flood Risk
Index for each pixel (FHIj) was calculated using Equation (5) [7]:

FHI=2WJ><XJ~ 5)

where XJ is the ranking score of each class relative to layer J, and W] is the weight of
layer J. In addition, the Inflation Risk Index (FHI) has been divided into five (5)
classes, namely: very low, low, moderate, high and very high.

Relationship between the flood susceptibility map, data from the 2024 field surveys,
and the built-up area of the city of Bol

In this study, the relationship between the flood susceptibility map, field survey
data collected in 2024, and the built-up area of the city of Bol was established using
an approach like that employed in previous studies [56,57]. This involved using field
data collected with GPS during surveys conducted in Bol in 2024, as well as mapping
the city’s built-up areas using shapefile data from the municipality of Bol’s Geographic
Information System (GIS) department. The two maps produced from this data were
then superimposed on the flood susceptibility map, developed using GIS and the AHP
method, to analyse the spatial relationships between the flood zones identified by the
AHP model, the built-up area of the town of Bol, and the distribution of households
observed in the field.

Figure 3 presents the entire flowchart, illustrating the processes used to map
flood risks in this study.

[ DATA ACQUISITION |

Il)|g|m| Elevation Modcl([)[{l\ll}] [W’mcrcmlrscs J | Land user | I Rainfall J lSulI mmrc]

Land cover
N | | |
E : : i GIS PRE-PROCESSING : :

N S e

Drainage Distan Rainfall Infiltration
density wate: intensity

Flu

Elevation 2 Slope
| accumulation| | S1oPe

| AHP analysis and weight attribution |

| Flood Hazard Index (FHI) |

]

| Flood Hazard Map |

Figure 3. Flowchart of the methodology used to map flood susceptibility in the city
of Bol.
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Uncertainty and sensitivity

The weighting of factors using the Analytic Hierarchy Process (AHP) and the
reclassification thresholds introduce uncertainty into the assessment of flood
susceptibility, particularly in transition zones between classes. Due to insufficient data
to conduct a formal uncertainty or sensitivity analysis, this dimension is recognised as
a methodological limitation of the study. Nevertheless, it constitutes an important
research perspective, particularly through the implementation of systematic sensitivity
analyses, variants of fuzzy AHP, or hybrid approaches combining multi-criteria
methods and statistical or machine learning models.

2.4.2. Household survey

The household surveys covered a sample of 385 people from different socio-
professional categories in 2024 in the city of Bol, with households randomly selected
to avoid duplication. The questionnaires were created using Kobo Toolbox and
administered using the Kobo Collect application, version 2023.2.4 [12]. The heads of
each household were considered as samples. This approach has already been used in
recent studies conducted in Central Africa [58]. In the field, vernacular was used for
those who did not understand the interview language. We also used translators and
local informants to translate and explain the interview to city dwellers. To do this,
verbal consent was obtained from respondents before each interview began. These
surveys collected information on the floods that occurred in the city of Bol in 2024.

The survey used a questionnaire combining closed-ended and open-ended
questions, a methodological approach also used in previous studies in Central Africa
[58]. The data collected from households covers the following variables:

® Socio-economic characteristics of respondents (gender, age, education level,
occupation, household income);

® Households’ perceptions of flooding;

®  Identify households affected by the 2024 floods.

To determine the sample size, the inverse of the margin-of-error Equation (6)
proposed by Daniel Schwartz was used. Let n be the sample size for a rounding of g,
and we have the following:

[(24)? x P(1 = P)]
ny = - (6)

With Za: Fixed margin or margin reduced to a 5% risk (1.96), which corresponds to a

95% confidence interval; d: margin of error set at 3% and P: proportion of the
population of the town of Bol in the Lake Chad region (8.29%, or 0.0829 rounded to
0.1).

By using the digital application:

_ [(1,96)2x0,1(1 - 0,1)]
ng = (3%)2

ng =385

2.4. Data analysis and processing

Spatial data were processed and analysed using QGIS 3.34.12, a Geographic
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Information System, to integrate, structure, and exploit all the geographic data used in
this study. The maps produced were then harmonised and finalised in Adobe Illustrator
2024 to improve their readability and graphic quality. For the analysis of socio-
demographic and professional data and perceptions related to flooding, respondents’
answers from the Kobo Toolbox platform were exported as CSV files and imported
into Excel. The processing included cleaning the databases (detecting and managing
missing values, checking consistency, recoding and formatting variables). The
Microsoft Office suite was also used to organise, structure and format the additional
data tables. Additional validation was carried out by analysing the spatial distribution
of households affected by flooding according to susceptibility classes. A ¥ goodness-
of-fit test was used to assess whether the affected households were significantly
concentrated in the moderate-to-high susceptibility classes.

3. Results

3.1. Responses from household survey participants
3.1.1. Profiles of household survey respondents

The results show (Table 5) a strong male predominance among respondents
(87.01%) and a population predominantly of working age (85.46% aged 20 to 59).
Analysis of place of birth shows that 61.56% of respondents are native to Bol and
23.12% to Lac province, indicating a predominantly indigenous population. The level
of education is heterogeneous, with a high proportion of households with no formal
education or from Koranic schools (53.77%), although a quarter of respondents have
a university degree (26.49%). The dominant activities are trade (31.43%) and agro-
pastoral and fishing activities (30.13%), both of which are highly sensitive to climate
hazards. Finally, more than half of households (52.21%) have monthly incomes of less
than 100,000 CFA francs.

Table 5. Information on participants in the household survey.

Information Category Frequency Percentage (%)
Male 335 87.01
Gender
Female 50 12.99
Under 20 years old 13 3.38
20 to 39 years old 196 5091
Age group
40 to 59 years old 133 34.55
60 years old and over 43 11.17
Bol 237 61.56
Lac Province 89 23.12
Place of birth
Chad 43 11.17
Outside Chad 16 4.15
None 93 24.16
Koranic school 114 29.61

Level of education
Primary education 31 8.05

Secondary education 45 11.69
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Table 5. (Continued).

Information Category Frequency Percentage (%)

Level of education University education 102 26.49
Farmer/fisherman/agricultural worker 116 30.13
Craftsman 14 3.04
Private sector employee 56 14.55
Public sector employee 39 10.13

Occupation Retired 9 2.34
Trader 121 3143
Student 12 3.12
Unemployed 14 3.64
Other 4 1.04
Less than 59,999 CFA francs 118 30.65

Monthly income 60,000-99,999 CFA francs 83 21.56
100,000-199,999 CFA francs 98 25.45
200,000 CFA francs and above 86 22.34

3.1.2. Perception of rainfall and flood recurrence in the city of Bol by the
population

The results presented in Table 6 highlight households’ perceptions of rainfall
regularity and intensity, flooding frequency, accessibility of residential areas, presence
of rainwater drainage systems, and their experience of the 2024 floods in the city of
Bol. The results show that 70.91% of respondents consider rainfall regular, while
29.09% consider it irregular. Regarding its intensity, 58.70% of respondents describe
it as heavy, 30.39% as moderate, and 10.91% as light. Furthermore, 63.90% reported
having been affected by the 2024 floods, compared to 36.10% who were not. And
38.70% reported losing their homes, while 61.30% reported not losing them. As for
the frequency of flooding, 49.87% of respondents perceived it as annual, while 31.43%
said it occurred every 1 to 5 years, 16.62% every 6 to 10 years and only 2.08% every
10 years or more. The results regarding the accessibility of residential areas during the
rainy season show that most households (47.53%) face difficult-to-very difficult
access conditions (37.66% difficult and 9.87% very difficult). Only 20.52% of
households report easy accessibility, and 31.95% report passable access conditions.
Furthermore, analysis of drainage or rainwater retention structures reveals a marked
lack of hydraulic infrastructure, with 94.03% of households reporting the absence of
such structures in their residential areas. Only 5.97% of respondents benefit from
drainage systems.

Table 6. Responses from participants in the household survey on perceptions of
rainfall and the recurrence of flooding in the city of Bol.

Variables Answers Frequency Percentage (%)

Yes 273 7091

Precipitation regularity
No 112 29.09
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Table 6. (Continued).
Variables Answers Frequency Percentage (%)
Strong 226 58.70
Rainfall intensity Medium 117 30.39
Weak 42 10.91
Yes 246 63.90
Impact of the 2024 floods
No 139 36.10
Yes 149 38.70
Destroyed houses
No 236 61.30
Every year 192 49.87
1 to 5 years 121 3143
Flood frequency
6 to 10 years 64 16.62
Over 10 years 08 2.08
Easy 79 20.52
Accessibility of the residential area during Fair 123 31.95
the rainy season Difficult 145 37.66
Very difficult 38 9.87
Existence of drainage or rainwater retention Yes 23 5.97
structures in their area No 362 94.03

3.2. Flood risks in the town of Bol

3.2.1. Physical factors contributing to flood risk in the town of Bol

The classes, ratings and surface coverage of the eight (8) flood risk factors
(precipitation, altitude, slope, land use and cover, distance from watercourses, soil
infiltration rate, drainage network density, and flow accumulation) were combined to
identify the most exposed areas. The results of this compilation are presented in Table

7.
Table 7. Physical factors contributing to flood risk in the study area.
Area coverage
Factors Class Notation
Ha Percentage (%)
38-64 1 3.52 0.08
65-82 2 960.02 23.09
Rainfall intensity (mm) 83-96 3 251.47 6.05
97-118 4 2284.39 54.93
119-157 5 659.15 15.85
275-280 5 903.21 21.72
280-285 4 1112.76 26.76
Elévation/Altitude (m) 285-290 3 688.44 16.55
290-295 2 1175.51 28.27
295-304 1 278.63 6.70
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Table 7. (Continued).

Area coverage

Factors Class Notation
Ha Percentage (%)
0-0,5 5 1361.66 37.74
0,5-1 4 982.20 23.62
Slope (%) 1-2 3 1365.86 32.84
2-3 2 433.82 10.43
3-4 1 15.02 0.36
Water 5 603.14 14.50
Built 4 749.30 18.02
Land use and land cover (pixels) Bare soil 3 2244.20 53.97
Crop 2 282.33 6.79
Vegetation 1 279.58 6.72
<200 5 552.99 13.30
200-500 4 844.47 20.31
E;f;a;lrclf (fégm the hydrographic 541 1099 3 1495.99 35.97
1001-2000 2 1231.29 29.61
>2000 1 33.81 0.81
Clayey 5 661.54 15.91
Alluvial
El;‘émmorp 4 16.02 0.38
hic
Soil (infiltration rate, mm/h) Sandy 3 2201.89 5295
z:flre*giﬁ"/ ey 1184.44 28.48
g;’s;gpe q 94.66 2.28
14 1 2487.35 59.81
4-10 2 874.23 21.02
Drainage density (m/m?) 10-16 3 582.42 14.01
16-23 4 177.49 427
23-34 5 37.07 0.89
0-101 1 3990.56 95.96
102-303 2 64.17 1.54
Flow accumulation (pixels) 304-551 3 19.28 0.46
552-1135 4 54.34 1.31
11362866 5 30.20 0.73

The spatial distribution of various rainfall intensity classes (Figure 4; Table 7)
indicates that the highest values (97-118 mm) cover more than half of the study area
(54.94%), particularly around Bol, Tandal, and Berim. Conversely, locations in the
north and northwest, such as Matafo 1, Matafo 3 East, Matafo 3 West, and
Katchikitchiri, experience lower rainfall, while intermediate areas like Marafadjari,
Tchaourom, and Maradouni North show average intensities. Topographically, the
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northern and north-western regions correspond to the highest altitudes (275-285 m),
whereas the lower zones (285-304 m), including Marafadjari, Tchaourom, Maradouni
Nord, Bol, Tandal, Berim 1, Berim 2, and Bol Berim, are characterised by increased
vulnerability to flooding (Figure 5; Table 7). Over 43.27% of the study area, notably
Marafadjari, Tchaourom, Maradouni Nord, Bol, Tandal, Berim 1, Berim 2, and Bol
Berim, has slopes between 1 and 3%, which correspond to the highest flood-sensitivity
scores (Figure 6; Table 7). Land occupation and use also influence flood risk: built-
up areas, accounting for 18.02% of the land and mainly located in Matafo 1,
Maradouni Nord, Bol, and Berim, exhibit a high flood score due to their low
infiltration capacity. Conversely, vegetation zones (6.72%), crops (6.79%), and open
water (14.50%) promote infiltration and runoff (Figure 7; Table 7). Proximity to the
river network further amplifies risk. Areas less than 200 m and between 200 and 500
m from watercourses, covering 13.30% and 20.31% of the area, respectively, are
located in the sectors of Bol, Tandal, Berim 1, Berim 2, and Bol Berim, where flooding
susceptibility is greatest (Figure 8; Table 7). Sandy soils, which predominate at
52.95%, facilitate relatively effective infiltration, while clay soils (15.91%) and
alluvial or hydromorphic soils (0.38%), predominantly found in Maradouni Nord, Bol,
and Berim, tend to have low permeability, contributing to the high flood risk scores
observed in these zones (Figure 9; Table 7). Drainage density in the study area is
generally low: classes of 1-4 m/m? and 4-10 m/m? cover 59.81% and 21.02% of the
surface area, respectively, and are associated with low risk. Conversely, the smaller
zones with densities between 10 and 34 m/m?, which constitute 19.17% of the area,
are associated with higher risk levels (Figure 10; Table 7). Lastly, the flow
accumulation analysis shows that 95.96% of the area corresponds with low values (0—
101 pixels), located in the north, centre, and west. Higher classes, although sparse
(1.54% to 0.46% for intermediate and 1.31% to 0.73% for the highest values), are
mainly situated along drainage channels crossing Tandal, Bol Berim, Berim 1, and
Berim 2, where runoff concentrates, increasing flood risk (Figure 11; Table 7).

14°40°20°€ H42'0E 144390E 1#450°E
N

A

|3°31J' 0N
wHAN

300N

13°30'0°N

w2
1728 90N

Legend
9 Locality

13"27:0"”{
waroN

Medium
B righ
I very nigh

o 175 35
I: Study sie Km

T T T T
14°40°30°E WAZCE 14743 I0E 14°45'0°E

Figure 4. Rainfall intensity.

13’25I':G"N
125N

17



Sustainable Social Development 2026, 3(4), 8348.

1474030 1442 0°F MATIOE WASTE
N
£ A z
B ®
o1 [
B b
£ 2
& =)
8- 8
= g
£ =z
2 8
3 e
z || Legend z
L 2 )
5 9 Locality L&
& || Level L
- Very low
[ Low
‘ \ Medium
2| | High Z
|| I very righ 5
é’ ] stugysite g i EKm '§
1473030 1442 0E A3 IE WALCE
Figure 5. Altitude.
144030 14°42'0°E W43I0E WA50E
N
z A z
4 &
2 P
e e
Z z
o o
81 8
ficg b
= o5
3 3
& B
2 e
Legend
£ S £
h' @ Locality 'h
|| Level 8
- Very low
Bl o
L Medium
h
= Higf 5
? Very high =3
&4 | stuoy site g i S A
5 - %
14°40'30°E 1452 0E W4TI0E A5 0E

18

Figure 6. Slope.



Sustainable Social Development 2026, 3(4), 8348.

Figure 8. Distance from watercourses.
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Figure 11. Accumulation of flows.

Beyond surface proportions, the spatial distribution of classes reveals a clear
structure of flood susceptibility: low-lying areas with very gentle slopes exhibit the
highest levels of risk, as they promote stagnation and runoff accumulation. This pattern
is further supported by the presence of hydromorphic or low-permeability soils, which
restrict infiltration, and by urbanisation (LULC), which increases runoff. Therefore,
regions where low slopes, proximity to the hydrographic network, built-up areas, and
low-permeability soils coincide correspond to the main risk zones identified on the
thematic maps (Figures 4—11), explaining their dominant role in overall susceptibility.

3.2.2. Weighting of factors and flood risk index model

Saaty’s AHP model was utilised to estimate the relative importance of factors
contributing to the selected floods. The pairwise comparison matrix and the factor
weightings are shown in Table 8. The AHP hierarchy reveals that factors related to
hydrometeorological forcing (precipitation) and topographical context (altitude, slope)
are the primary determinants of flood susceptibility. In the case of Bol, this dominance
aligns with a flood dynamic driven by the intensity of inflows during the rainy season
and the very limited capacity of low-lying areas to drain water. Land use and proximity
to the hydrographic network further influence this dynamic by affecting infiltration,
runoff, and flow connectivity.
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Table 8. Matrice de comparaison par paires et poids estimés.

Land use

Flow Precipitation Soil and land Slope Elevation Distance from  Drainage
Factors accumulation in tenfity (PT) texture cover (S)p (E) watercourse density Weight
(FA) (8T) (LULC) (DF) (DD)
Flow
accumulation 1 1/8 1/3 1/4 1/6 1/7 1/4 Vs 0.03
(FA)
Precipitation
intensity (PI) 8 1 8/3 2 4/3 8/7 2 4 0.23
Soil texture (ST) 3 3/8 1 3/4 12 3/7 3/4 32 0.09
Land use and
land cover 4 12 4/3 1 2/3 4/7 1 2 0.11
(LULC)
Slope (S) 6 3/4 2 7/4 1 6/7 3/2 3 0.17
Elevation (E) 7 7/8 7/3 7/4 7/6 1 7/4 7/2 0.20
Distance from
watercourse 4 12 4/3 1 2/3 4/7 1 0.11
(DF)
Drainage density
(DD) 2 1/4 2/3 12 1/3 2/7 1/2 1 0.06
CR=0.0042
Furthermore, the calculated RC value is 0.0042. Since it remains below the
critical threshold of 0.1, the weights determined are deemed consistent and suitable
for use in calculating the flood hazard index, as shown in Equation (7).
FHI = 0,03Xp,+ 0,23Xp; + 0,09X gy + 0,11 Xy + 0,17Xg + 0,20Xg + 0,11 Xpg + 0,06Xpp @)

Based on the factor weightings, rainfall intensity has the highest weight in the
city of Bol, indicating that it is the primary factor contributing to the risk of flooding
there.

3.2.3. Flood susceptibility map for the city of Bol

The flood susceptibility map (Figure 12) was created by combining eight
physical factors using coefficients derived from the Analytical Hierarchy Process
(AHP). The results (Figure 12 and Table 9) show that 16.19% of the city of Bol is at
very high flood risk, while 28.08% is at high risk. These highly vulnerable zones are
mainly clustered around Bol, Tandal, Berim 1, Berim 2, and Bol Berim. Conversely,
very low and low risk levels cover 11.29% and 17.72% of the total area, primarily in
the north and north-west, particularly in Matafo 3 East and West, Marafadjari,
Tchaourom, Maradouni North, and Katchikitchiri. The medium risk class, accounting
for 26.72% of Bol, encompasses intermediate zones situated between these extremes,
notably around Marafadjari, Tchaourom, and Maradouni North. Additionally, the
results indicate that high- and very high-risk zones correspond to areas with the highest
rainfall intensities, confirming that rainfall intensity is the primary factor influencing
physical vulnerability to flooding in Bol. Finally, the spatial analysis (Figure 12)
reveals an uneven distribution of risk, reflecting significant spatial heterogeneity
associated with the eight physical factors considered in this analysis.
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Table 9. Area distribution of hazard levels.

Danger level

Surface area

Percentage (%)

Very low 469.28 11.29
Low 736.95 17.72
Medium 1111.06 26.72
High 1167.83 28.08
Very high 673.43 16.19
TOTAL 4158.55 100

Figure 12. Flood susceptibility map of the city of Bol using the AHP model.

Figure 12 shows that moderate-to-high susceptibility classes are mainly
concentrated in low-lying areas with gentle slopes, where hydrological connectivity is
enhanced by the proximity of the drainage network. Areas with low susceptibility are
more likely to be relatively higher and better drained. This spatial organisation is
consistent with the maps of dominant factors (Figures 4-11), suggesting that
susceptibility results from the combination of unfavourable topographical conditions
and surface characteristics that limit infiltration.
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3.3. Relationship between the flood susceptibility map, data from field
surveys conducted in 2024, and the built-up area of the city of Bol

3.3.1. Relationship between the flood susceptibility map and the built-up area of
the city of Bol in 2024

Of the city of Bol’s total area of 4,158.55 ha, built-up areas occupy 749.30 ha, or
18.02% of the total urban area. The superimposition of the flood susceptibility map,
developed from remote sensing data and the combined GIS-AHP approach, with land
use is shown in Figure 13, where built-up areas appear in pink. The results (Figure
13 and Table 10) indicate that 41.95% (314.37 ha) of the built-up area is in areas
classified as having a very low to low flood risk (15.11% very low and 26.84% low),
which reflects a relatively limited exposure to flooding. On the other hand, 47.12%
(353.07 ha) of the built-up area is in areas of moderate sensitivity, while 10.93% (81.86
ha) is in areas characterised by high to very high risk (including 10.57% at high risk
and 0.36% at very high risk). As illustrated in Figure 13, a significant proportion of
the built-up area is in moderate to high susceptibility classes, indicating potential
exposure of the habitat to flooding and justifying the use of urban-scale mapping to
guide zoning and risk reduction measures.
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Figure 13. Comparison of the flood susceptibility map with the extent of built-up
areas in 2024.

Table 10. Distribution of built-up area according to hazard level.

Danger level Built-up area (ha) Percentage (%)
Very low 113.22 15.11

Low 201.15 26.84

Medium 353.07 47.12

High 79.19 10.57

Very high 2.67 0.36

TOTAL 749.30 100
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3.3.2. Relationship between the flood susceptibility map and household surveys
conducted in Bol in 2024

The results of the comparison between the flood susceptibility map developed
using GIS and the AHP method (Figure 14) and the field survey data collected in 2024
are presented in Figure 14 and Table 11. The 385 households surveyed are
georeferenced and represented as points on the map (Figure 14). The results indicate
that 38.96% of households are in areas characterised by very low to low risk (9.35%
and 29.61%, respectively), while 39.74% are in areas of moderate risk. Furthermore,
21.30% of households are in high-risk areas, while no households are recorded in areas
classified as very high risk. A y* goodness-of-fit test applied to the distribution of
households surveyed according to flood susceptibility classes reveals a highly
significant difference from a uniform distribution (y? = 191.95; ddl = 4; p < 0.001),
indicating a marked concentration of households in areas of moderate to high
susceptibility.
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Figure 14. Comparison of the flood susceptibility map with the 2024 household

13925 40°N
13°26'40°N

Surveys.
Table 11. Distribution of households according to level of risk.
Danger level Number of households Percentage (%)
Very low 36 09,35
Low 114 29,61
Medium 153 39,74
High 82 21,30
Very high 00 00
Total 385 100
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4. Discussion

The results of this research show that the households surveyed in Bol are
characterised by a strong male predominance (87.01%) and a population mainly of
working age (2059 years: 85.46%), which is common in surveys conducted in
Sahelian cities, where heads of households and main respondents are predominantly
men, due to socio-cultural norms and gendered division of roles [59]. This
configuration influences risk perception and adaptation choices, which are often made
by household heads rather than by all household members, particularly women and the
elderly. Furthermore, analysis of place of birth reveals that more than 84% of
respondents are natives of Bol or the Lake Province, indicating a largely indigenous,
permanently settled population. This long-term residence may reinforce empirical
knowledge of risks, particularly flooding, as shown by several studies in sub-Saharan
Africa, where local populations develop adaptation strategies based on accumulated
experience [60,01]. However, this familiarity with hazards can also promote a
normalisation of risk, as illustrated by the fact that nearly half of those surveyed
(49.87%) perceive flooding as an annual phenomenon. This process has already been
documented in the literature on climate risk perception by Doussoumou et al. [62] and
Kumaresen et al. [63], who show that the near-annual recurrence of floods tends to
render them “ordinary” hazards. Furthermore, the majority perception of regular
(70.91%) and intense (58.70%) rainfall is consistent with several studies conducted in
sub-Saharan Africa, which highlight an increase in the intensity of extreme rainfall
rather than a uniform increase in annual rainfall, thereby increasing the risk of urban
flooding [64,65]. This rainfall pattern promotes high runoff volumes over short
periods, quickly exceeding the soil’s and urban drainage systems’ absorption and
drainage capacities, thereby increasing susceptibility to flooding. These perceptions
and physical conditions are reflected in the high proportion of households reporting
that they were affected by the 2024 floods (63.90%) and suffered loss of housing
(38.70%), which is consistent with the studies by Allarané et al. [28] on the direct
impacts of flooding in N’Djamena, where material damage is one of the most frequent
and severe consequences.

In spatial terms, the flood susceptibility mapping carried out in Bol highlights the
central role of the combination of physical flood factors, namely rainfall intensity,
altitude, slope, land use and cover, distance to watercourses, soil infiltration capacity,
drainage network density, and flow accumulation in a GIS environment. The high
weighting given to rainfall intensity in the AHP analysis confirms its decisive role, as
shown in numerous previous studies [24,36,41]. However, the literature emphasises
that the dominant factor varies according to the hydro-geomorphological and urban
context: some studies give greater weight to distance from watercourses [7,38], soil
properties [45], altitude [23], slope [38,43], land use and cover [40], flow
accumulation [27] or drainage network density [38]. The case of Bol is distinguished
by its location in a low-relief lake plain, where slight variations in altitude are
sufficient to promote water accumulation and stagnation.

The results of this study show that 44.27% of the city of Bol is exposed to a high
to very high risk of flooding (28.08% and 16.19%, respectively). These areas mainly
correspond to agricultural polders and areas adjacent to watercourses. This high
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vulnerability can be explained by a combination of intense rainfall, gentle slopes, low
altitudes, proximity to watercourses and the presence of clay soils, which promote
water accumulation and stagnation. These results are consistent with the conclusions
of [66,67]. They also agree with those of Quesada-Roman [68] in Costa Rica, who
emphasise that the highest flood risks are concentrated in areas with low slopes, low
altitudes and clay soils. Furthermore, 26.72% of the city of Bol’s area has a medium
level of risk, indicating significant vulnerability to flooding. In contrast, low- and very
low-risk areas cover only 29.01% of the total area (17.72% and 11.29% respectively).
These areas are mainly located in the north and north-west, where higher altitudes,
greater distance from watercourses, better soil permeability, better drainage and
relatively low rainfall contribute to reducing the risk of flooding. These conclusions
are consistent with those of [7,69], which emphasised that topographical, pedological
and other environmental factors play an important role in reducing flood risks.

The relative contribution of these factors was quantified using a multi-criteria
decision-making approach based on the analytical hierarchy process (AHP) developed
by Thomas Saaty [54], which relies on pairwise comparisons and the estimation of
normalised weights reflecting the relative importance of each parameter. The
analytical hierarchy process (AHP) is a structured decision-making framework that
helps prioritise and select the best option by breaking a complex decision into a
hierarchy of objectives, criteria, and alternatives [26]. It improves decision-making by
providing clearer visualisation and enhanced mapping capabilities, thereby facilitating
the development of hazard maps [18]. Nevertheless, AHP is subject to several
methodological criticisms, particularly its unbalanced judgment levels, arbitrary
rankings, high subjectivity in scoring, and inability to accurately handle the
uncertainty associated with pairwise comparisons [70,71]. Furthermore, psychological
research has shown that nine items represent the maximum number a person can
reliably rank and compare simultaneously; hence, it is strongly recommended to use
no more than nine criteria [7,72], which highlights the limitation of this study to eight
(8) factors. Despite these limitations, AHP remains an effective and relevant method
for risk mapping [53,73], as it allows complex decisions to be structured and expert
knowledge to be integrated in contexts where data are limited, while ensuring rigorous
control over the consistency of judgments.

An important methodological contribution of this study lies in the validation of
results by field data. The statistically significant concentration of affected households
in the moderate-to-high susceptibility classes, as highlighted by the y? test, reinforces
the credibility of the GIS-AHP model. Few GIS-AHP studies include explicit socio-
spatial validation, often limiting themselves to a visual comparison of maps and
observations [27,57]. In this respect, the approach adopted is in line with the
recommendations of ref. [74], which calls for better coordination between spatial
modelling and social data to improve the operational relevance of vulnerability maps.

However, this study’s methodological limitations must be discussed. The
subjectivity inherent in AHP, linked to expert judgements and weighting choices, has
been highlighted by Malczewski [75], who warns against the sensitivity of results to
methodological decisions. Feizizadeh et al. [ 76] therefore recommend using sensitivity
analyses or variants, such as fuzzy AHP, to better integrate the uncertainty associated
with pairwise comparisons. The use of moderate-resolution global data is a common
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compromise in regions with low local data production capacities. However, as Merz
et al. [77] point out, this choice may limit accuracy at the intra-urban scale and
warrants caution in the detailed interpretation of results, particularly in transition zones
between susceptibility classes. Furthermore, harmonising data from global sources
and heterogenecous spatial resolutions can introduce smoothing effects, potentially
affecting local spatial accuracy, particularly in transition zones between susceptibility
classes. The absence of formal uncertainty and sensitivity analysis is therefore a
significant limitation of this study.

Despite these limitations, the susceptibility map produced is a relevant
operational tool for flood risk management in Bol. It identifies priority areas for urban
development, drainage infrastructure planning and housing adaptation. It can be used
not only to raise awareness among communities, construction stakeholders, and
decision-makers about the most exposed areas, but also to help them implement
measures to strengthen their resilience, such as construction techniques, material
choices, and construction types specific to each area. In addition, the flood risk
susceptibility map plays a key role in land use and urban planning by providing
information to define the functions, priorities, and constraints specific to each area of
the city. This approach is important because over the last two decades, the frequency
of flooding has increased, not only due to climate variability but also to anthropogenic
factors such as rapid and unplanned urbanisation, deforestation, increased extraction
of aggregates for construction, inappropriate agricultural practices, and poor soil and
waste management [7,65,78,79]. This approach provides a solid scientific basis for
supporting decision-making and strengthening urban resilience.

5. Conclusions

This study aims to characterise the physical susceptibility to flooding in the city
of Bol in order to contribute to better management of a risk that has become
increasingly recurrent in this Sahelian urban context. It also assessed the combined
contribution of remote sensing, geographic information systems (GIS) and the
Analytic Hierarchy Process (AHP) to identifying and prioritising areas vulnerable to
flooding.

Methodologically, the study used eight key physical factors: rainfall intensity,
altitude, slope, land use and cover, distance to watercourses, soil infiltration capacity,
drainage network density and flow accumulation, integrated into a GIS environment.
Weighting these factors using AHP produced a susceptibility map showing that
44.27% of Bol’s urban area is highly to very highly susceptible to flooding, reflecting
significant structural exposure linked to local hydro-geomorphological conditions and
unplanned occupation of low-lying areas. Field surveys also revealed a predominantly
male, active, and indigenous population, characterised by a high dependence on
economic activities sensitive to climate hazards, as well as a marked perception of
intense rainfall and recurrent flooding, as confirmed by the significant impacts of the
2024 events.

The results obtained highlight the value of the GIS-AHP approach as a decision-
making tool for urban planning, drainage infrastructure design and prioritisation of
areas for flood risk reduction interventions. As such, the susceptibility map produced
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also allow for better consideration of the uncertainties associated with expert
judgements.
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