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Abstract: Climate change, a major challenge of the 21st century, is increasing the frequency 

and intensity of urban flooding, particularly in Sahelian cities. In Bol, in the Lac province of 

Chad, this dynamic has increased the frequency and intensity of flooding, making this risk a 

recurring threat to the city in recent years. This study aims to map the physical vulnerability 

(susceptibility) to flooding in the city of Bol using an integrated approach combining remote 

sensing, geographic information systems (GIS) and the Analytic Hierarchy Process (AHP). 

Eight key physical factors (precipitation, altitude, slope, land use, distance to watercourses, soil 

type, drainage density and flow accumulation) were analyzed and weighted using the AHP. 

The results show that 16.19% of Bol’s surface area is highly susceptible to flooding, and 28.08% 

is highly susceptible, concentrated mainly in low-lying areas and near watercourses. Surveys 

of 385 households confirm the recurrence of flooding and its significant impact on housing. 

The map produced is an essential decision-making tool for communities, decision-makers and 

urban stakeholders in planning actions to reduce current and future flood risks in the city of 

Bol. However, the lack of quantitative validation of the model is a methodological limitation, 

opening the door to future research incorporating uncertainty and exposure analyses. 

Keywords: flood vulnerability; Geographic Information System (GIS); Analytic Hierarchy 

Process (AHP); remote sensing; Bol; lake (chad) 

1. Introduction 

Climate change is no longer an unfamiliar term [1]. Today, it is one of the greatest 
challenges facing humanity, as it increases the frequency and intensity of extreme 
events such as droughts, floods, etc. [2–4]. On a global scale, these 
hydrometeorological phenomena cause significant human losses, considerable 
material damage and lasting degradation of socio-economic systems, particularly 
affecting urban infrastructure and housing [3,5]. These findings show that 
communities around the world are becoming increasingly vulnerable to natural 
disasters and climate change, and according to the World Bank, approximately 50% of 
the world’s population lives in areas exposed to natural hazards [6]. 

Floods, characterised by the submersion of normally dry areas, are one such risk 
[7]. They are among the most frequent and devastating climate hazards worldwide 
[8,9]. Between 1998 and 2017, they affected more than 2 billion people [10], with a 
notable increase in their frequency and intensity in tropical and Sahelian regions. In 
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Central and West Africa, the floods of 2024 caused massive destruction of housing 
(300,000 homes), forced the displacement of millions of people, and significantly 
worsened living conditions, revealing the high vulnerability of cities to flooding [11]. 
Chad, regularly ranked among the countries most vulnerable to climate change [12], 
is a prime example of this situation, with major floods in recent years affecting the 
population and prompting the Chadian government to declare a national state of 
emergency in 2022 [13].  

In this national context, the town of Bol, located on the southern shore of Lake 
Chad, is a particularly relevant case study. Its location in a low-lying plain, dominated 
by hydromorphic and alluvial soils, promotes water stagnation during the rainy season 
[14]. The lake, which recedes or overflows depending on the season, causes recurrent 
flooding that affects the riparian areas. This physical vulnerability is exacerbated by 
sustained population growth, the arrival of displaced populations, and rapid, 
unplanned urbanisation, which has led to the occupation of low-lying, flood-prone 
areas [14–16]. Recurrent flooding in Lac Province, particularly in 2024, affected 
102,145 households, left 71,070 people homeless, led to the destruction of 72,586 
homes and 76,712 hectares of crops, caused the loss of 51,686 head of livestock and 
resulted in 43 deaths [17], highlighting the urgent need for decision-making tools 
adapted to the local context. 

Conceptually, it is essential to clearly distinguish between flood hazard, 
vulnerability and risk. Flood risk is generally defined as the result of the combination 
of hazard, exposure and vulnerability. This study focuses specifically on assessing 
physical vulnerability, also referred to as flood susceptibility, understood as the 
intrinsic propensity of an area to be affected by flooding based on its hydro-
geomorphological, pedological and environmental characteristics. This 
methodological choice is motivated by the availability of spatial data and the need to 
produce operational mapping at the urban scale, while recognising that exposure and 
adaptive capacity are complementary dimensions of overall risk. 

Hazard mapping is an essential risk management tool, enabling the identification 
of areas likely to be exposed to various types of hazards, the planning of mitigation 
and adaptation measures, and the improvement of disaster preparedness, response and 
recovery [18]. There is no longer any doubt about the need for decision-making tools 
to assess a city’s flood susceptibility. Numerous studies have shown that remote 
sensing and geographic information systems (GIS) can be combined to map flood risk 
[7]. Remote sensing is useful for obtaining high-resolution images of flooded areas 
[19,20]. However, optical imaging has its limitations in detecting flooded areas when 
they are covered by dense vegetation or when the sky is very cloudy at the time of 
flooding [21,22]. These limitations compromise the accuracy of observation and 
mapping of affected areas [22]. The integration of remote sensing data into GIS is the 
most widely used method for mapping flood risks [7]. Numerous studies worldwide 
have used a combination of GIS methods and multi-criteria decision analysis (MCDA) 
to characterise flood hazards with high accuracy [18,7,23,24]. Among MCDA 
methods, the Analytic Hierarchy Process (AHP) has proven effective in mapping flood 
vulnerability [7,25]. AHP is a decision-making framework that helps prioritise and 
select the best option by breaking down a complex decision into a hierarchy of 
objectives, criteria and alternatives [26]. The AHP method improves decision-making 
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by providing clearer visualisation and enhanced mapping capabilities, thereby 
facilitating the development of hazard maps [18]. 

Previous studies, such as those in [7], have combined remote sensing data, GIS 
methods, and the Analytic Hierarchy Process (AHP) to map flood susceptibility in 
peri-urban areas of Greater Lomé, Togo. Kazakis et al. [27] used a multi-criteria 
methodology in the Rhodope–Evros region of Greece to identify flood-prone areas at 
the regional scale, combining spatial data in a GIS environment with the Analytic 
Hierarchy Process (AHP). And Sajid et al. [18] assessed the combined risks of flooding 
and landslides in the Kohistan district of northern Pakistan, a mountainous region 
highly vulnerable to natural hazards, using an integrated approach combining GIS, 
AHP and remote sensing. Their results show that 77% of the district is at high risk of 
flooding, while 30.5% is at high risk of landslides. Nevertheless, this work also 
highlights the highly contextual nature of the results, which depend on the factors 
selected, the weightings assigned and local hydro-geomorphological specificities. 
Consequently, the direct transposition of models from one territory to another remains 
limited and requires methodological adaptations.  

In the context of Chad, research on flooding has mainly focused on socio-
economic impacts, adaptation strategies or work in certain large cities, particularly 
N’Djamena [28–30]. In Bol, existing work on vulnerability to climate risks has mainly 
focused on the agricultural, fishing and pastoral sectors, as well as on cross-cutting 
issues such as migration and gender, leaving little room for analysis of urban 
vulnerability to flooding [12,31–33]. To our knowledge, no study has yet proposed an 
integrated flood susceptibility map combining remote sensing data, GIS analysis, the 
AHP method and field surveys at the scale of the city of Bol. 

Considering these findings, this study aims to fill a scientific and operational gap 
by advancing traditional flood-mapping approaches based on GIS and the Analytic 
Hierarchy Process (AHP). Unlike previous studies, which were often limited to purely 
physical modelling and large-scale analyses, this research adopts a broader 
methodological approach combining remote sensing data, GIS analysis, AHP and 
georeferenced field surveys, enabling the results of the susceptibility model to be 
compared with empirical observations from affected households. The analysis is 
conducted at the fine scale of a secondary Sahelian city, Bol, with homogeneous spatial 
resolution, highlighting intra-urban heterogeneities that have been little explored in 
previous GIS-AHP studies. Finally, the explicit linking of the susceptibility map with 
the built-up area and the distribution of affected households makes the study highly 
relevant for decision-making, providing a tool that can be directly used for urban 
planning, risk management and the orientation of local adaptation strategies.  

The study focuses on the following research question: How do physical factors 
interact to shape the spatial distribution of flood susceptibility in the city of Bol? The 
main objective is to map physical flood susceptibility using an integrated GIS-AHP 
approach. More specifically, the study seeks to: (i) analyse local populations’ 
perceptions of rainfall and flood recurrence; (ii) prioritise the physical factors 
contributing to flood vulnerability using the Analytic Hierarchy Process; and (iii) 
produce a susceptibility map to support urban planning, risk management and the 
development of local adaptation strategies in the city of Bol. 
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2. Materials and methods 

2.1. Study area 

This study is being conducted in the town of Bol, located on the shores of Lake 
Chad, 153 km north of the capital, in the Sahelian zone of Chad, between 13°27’31’’ 
north latitude and 14°42’53’’ east longitude (Figure 1). The town of Bol is strategically 
located because it borders Nigeria, Niger, and Cameroon. It also benefits from an arid 
climate and a large surface water basin known as the “arm of Lake Chad”, an endorheic 
lake [12,34]. It is also located on a plain of hydromorphic soils, including lacustrine 
alluvial soils, sandy-clay soils, alluvial soils, sandy-beige to sandy-clay soils and 
tropical black clays [14]. The city is located within a very active trade network, 
distinguished by an economy based mainly on primary sector activities, where its 
economic importance is reinforced by substantial agricultural production from the 
Lake Chad polders [16]. 

 
Figure 1. Geographical location of the study area. 

Figure 2 shows the ombrothermic curve for the city of Bol and highlights a highly 
contrasting climate seasonality. The dry season, particularly marked from January to 
March, is characterised by almost total rainfall absence (0 mm), while the rainy season 
lasts from May to September, with maximum rainfall in August (136 mm). 
Temperatures peak in May (44.6 °C) before the rains set in, while average monthly 
temperatures range from 23.4 °C in January to 34.3 °C in May.  
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Figure 2. Ombrothermic diagram of the city of Bol, based on average monthly 
temperature and precipitation data from 1982 to 2022. Source: Synoptic data 
collected from the national meteorological agency (ANAM), 2024. 

2.2. Data used 

Table 1 shows all the data used in this study, which comes from remote sensing 
products and fieldwork. 

Table 1. The various data used in this study. 

Data type Descriptions Sources 

Digital elevation 
model 

Field-corrected radiometric 
data 

https://www.earthdata.nasa.gov/data/projects/alos-palsar-rtc-project (accessed on 14 July 
2025) 

Sentinel-2 image 
Land use and land cover data 
for the year 2024 

https://livingatlas.arcgis.com/landcoverexplorer/#mapCenter=14.48797%2C13.40043%2
C10.71&mode=step&timeExtent=2017%2C2021&year=2024 (accessed on 15 July 2025) 

Soil data 
Soil Grids soil map developed 
by ISRIC-World Soil 
Information 

https://soilgrids.org/ (accessed on 17 September 2025) 

Rainfall data 

Continental-scale daily rainfall 
estimates for 2001-2024 from 
the Famine Early Warning 
Systems Network project 

https://power.larc.nasa.gov/data-access-viewer/ (accessed on 22 July 2025) 

Data on the 2024 
floods 

Field data on households 
affected by the 2024 floods 

Fieldwork in 2024 

2.3. Selection of criteria 

The criteria were selected based on their contribution to the genesis of flooding 
in the study area and on their recurrent use in previous scientific literature employing 
the same methods. Table 2 summarises the main previous studies cited as references. 
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Table 2. Summary of previous studies using the same method. 

Parameters Number of criteria Methods Study area References 

Altitude, slope, distance to a watercourse, rainfall 
intensity, accumulation flow, land cover/land use, 
soil type. 

7 
AHP, GIS, Remote 
Sensing 

Grand Lomé (Togo) 
Blakime et al., 
2024 [7] 

Slope, curvature, land cover/land use, altitude, 
distance to a watercourse, soil type, Normalised 
Difference Vegetation Index (NDVI), precipitation, 
Topographic Wetness Index (TWI). 

9 
AHP, GIS, Remote 
Sensing 

Kohistan (Pakistan) 
Sajid et al., 
2025 [18] 

Slope, drainage density, soil type, isohyet, 
population density, land cover/land use and 
sewerage system density. 

6 
AHP, GIS, Remote 
Sensing 

Abidjan (Côte 
d’ivoire) 

Danumah et 
al., 2016 [35] 

Altitude, slope, surface curvature, Topographic 
Wetness Index (TWI), Stream Power Index (SPI), 
precipitation, depressions, drainage density, and 
distance to a watercourse. 

9 
AHP, GIS, Remote 
Sensing 

Sud-Ouest de 
l’Arabie Saoudite 

Alarifi et al., 
2022 [24] 

Precipitation, distance to a watercourse, altitude, 
slope, land cover/land use, drainage density, soil 
type, lithology. 

8 
AHP, GIS, Remote 
Sensing 

Bassin de Shatt Al-
Arab (Iraq-Iran) 

Allafta et al, 
2021 [24] 

Land cover/land use, altitude, slope, surface runoff, 
distance to a watercourse, precipitation, soil 
texture, soil drainage, and relief. 

9 
AHP, Weighted Linear 
Combination (WLC), 
GIS, Remote Sensing 

Bassin de Kemp-
Welch (Papouasie-
Nouvelle-Guinée) 

Morea et al., 
2020 [25] 

Elevation, slope, drainage density, distance to a 
watercourse, topographic Wetness index (TWI), 
modified normalised water index, precipitation, 
normalised difference vegetation index (NDVI), 
and lithology. 

9 
AHP, GIS, Remote 
Sensing 

Bassin versant de 
Cheliff-Ghrib 
(Algérie) 

Mokhtari et 
al., 2023 [26] 

Precipitation, slope, flow accumulation, elevation, 
distance to watercourse, land cover/land use, soil 
type. 

7 
AHP, GIS, Remote 
Sensing 

Rhodope-Evros 
(Grèce) 

Kazakis et al., 
2015 [27] 

Precipitation, normalised difference vegetation 
index, drainage density, flow accumulation, 
topographic moisture index, elevation, slope, 
curvature, distance to watercourse, soil type, land 
use/land cover. 

11 
AHP, GIS, Remote 
Sensing 

District de Dega 
Damot, (Éthiopie) 

Negese et al., 
2022 [36] 

Precipitation, slope, land use/ land cover, drainage 
density, distance to road, topographic Wetness 
index, distance to watercourse, normalised 
difference vegetation index, and altitude. 

9 
AHP, GIS, Remote 
Sensing 

Freetown (Sierra 
Leone) 

Koroma et al., 
2024 [37] 

Altitude, slope, normalised differential vegetation 
index (NDVI), land use/land cover, soil type, 
drainage density, distance to road, distance to 
watercourse, precipitation, topographic Wetness 
index (TWI). 

10 
AHP, GIS, Remote 
Sensing 

Comté de Davidson 
(Etats-Unis) 

Shrestha et al., 
2025 [38] 

Flow accumulation, slope, distance to a 
watercourse, drainage network density, land use/ 
land cover, precipitation, and permeability. 

7 
AHP, GIS, Remote 
Sensing 

Dades Wadi (Maroc) 
Aichi et al., 
2024 [39] 

Flow accumulation, distance to a watercourse, 
drainage network density, precipitation, slope, land 
use/ land cover, and permeability. 

7 
AHP, GIS, Remote 
Sensing 

Taguenit Wadi 
(Maroc) 

Ikirri et al., 
2022 [40] 

Following a review of the literature on flood mapping studies using GIS 
approaches and the Analytic Hierarchy Process (AHP), supplemented by an analysis 
of specific studies in the study area, observations from fieldwork, and consideration 
of data availability and quality, eight (8) physical factors determining the genesis of 
floods were selected and ranked. These factors were chosen for their documented role 
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in flood dynamics and their relevance to the city of Bol’s hydro-geomorphological 
context.  

Rainfall intensity is the most influential factor in this study, carrying the highest 
weight in the flood susceptibility analysis. Floods are intrinsically linked to rainfall, 
whose intensity and duration directly determine the volume of water generated, 
surface runoff and soil saturation [36,41]. Regions receiving heavy rainfall are 
therefore more prone to flooding than those with low rainfall [37]. In the context of 
Bol, which is characterised by highly seasonal rainfall, this factor plays a central role 
in flooding. 

Altitude appears to be the second most important factor. Low-lying areas are 
generally more vulnerable because they receive and accumulate runoff from higher 
areas [24,42]. As the city of Bol is located on a low-lying plain, slight variations in 
altitude are sufficient to cause water stagnation and the spatial expansion of flooded 
areas, underscoring the importance of this parameter.  

The terrain slope ranks third among the factors analysed. It directly influences 
runoff and infiltration processes. Areas with gentle slopes promote water accumulation 
and stagnation, thereby increasing susceptibility to flooding, while steeper slopes 
induce rapid runoff that can lead to flash floods and locally more destructive flooding 
[39,40,43]. In the Bol plain, characterised by very gentle slopes, this factor 
significantly contributes to flood risk. 

The fourth factor for mapping flood susceptibility is land use and land cover 
(LULC). These contribute to flooding by influencing infiltration and runoff. Urbanised 
areas limit infiltration and increase runoff, thereby increasing the risk of flooding [38]. 
Conversely, dense vegetation cover promotes infiltration and reduces this risk [36,40]. 
In the Sahelian context, as in Bol, populations attribute flooding to land-use changes 
[44], confirming that LULC is an important physical factor in identifying vulnerable 
areas [7].  

Distance from waterways is also considered the fourth factor in flood risk 
assessment, as areas located near the hydrographic network act as floodplains during 
heavy rainfall and are therefore the most vulnerable, while the danger decreases with 
distance [38,41]. Several studies show that populations living near watercourses are 
particularly exposed to flooding and overflowing [40,43], a situation frequently 
observed in the low-lying neighbourhoods of Bol.  

Soil type plays an important role in flood dynamics due to its physical properties, 
such as texture, permeability, and structure, which directly influence drainage, 
infiltration, and surface runoff [45]. The hydromorphic and low-permeability soils in 
Bol limit infiltration and promote water stagnation, thereby increasing the risk of 
flooding. 

The density of the drainage network is also considered in assessing physical 
vulnerability to flooding, as it directly influences runoff, flow rates and erosion 
potential. Areas with high drainage density quickly concentrate runoff and are often 
more prone to flooding, particularly during heavy rainfall [38]. In Bol, the natural and 
artificial drainage network significantly affects the spread of water during high-water 
periods.  

Finally, flow accumulation is also a relevant criterion in identifying flood-prone 
areas. This parameter has often been used in numerous previous studies [36,42]. It 
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represents the volume of water drained from upstream cells into a given cell, thereby 
influencing flow concentration and flood risk [40], particularly in low-slope areas such 
as Bol. 

2.4. Methods 

Several types of data and different methodologies were used in this study. On the 
one hand, an analytical approach based on physical factors was used to map flood 
susceptibility, structured in seven main steps: (i) data collection and preparation 
(precipitation, DTM, land use, soils, hydrography); (ii) harmonisation of data within a 
single coordinate system and division of the study area; (iii) derivation of 
topographical and hydrological variables (slope, flow accumulation, drainage density, 
distance to watercourses); (iv) normalisation/reclassification of each factor into 
ordinal susceptibility classes; (v) estimation of weights using the Analytic Hierarchy 
Process (AHP); (vi) weighted linear combination (WLC) to produce the susceptibility 
index and map; (vii) validation by comparison with field data and spatial consistency 
analysis of affected households. In addition, a quantitative approach using 
questionnaires administered to households was used to gather information on 
households’ perceptions of flooding. 

2.4.1. Methodology for developing the flood susceptibility map 

The flood susceptibility map was developed by integrating remote sensing data 
and geographic information systems (GIS) and applying the AHP approach [7,40]. The 
hydro-geo-morpho-climatic data layers, namely land use and land cover, distance from 
watercourses, precipitation, drainage network density, soil infiltration rate, flow 
accumulation, slope and altitude, were generated using GIS and remote sensing 
techniques from spatial data collected from various sources.  

Preparation of data relating to flood factors 

In this study, eight (8) determinants of flood risk were selected based on the 
specific characteristics of the study area, data availability, and previous studies on 
flood risk [7,23,39,40,42]. These factors include precipitation, altitude, slope, land use 
and land cover, distance from watercourses, soil infiltration rate, drainage network 
density and flow accumulation. In this study, the precipitation index was chosen to 
represent precipitation in the study area, and it was calculated using the Modified 
Fournier Index (MFI) with Equation (1) [7,41]: 

MFI = ෍
Pi

2

P

12

i=1
 (1)

where FMI is the Modified Fournier Index, i is the month, Pi is the monthly average 
rainfall (mm), and P is the average annual rainfall (mm). 

To map rainfall, daily precipitation data from 2001 to 2024 were downloaded 
from the POWER (Prediction of Worldwide Energy Resources) project database, a 
NASA (Langley Research Centre) initiative that makes ready-to-use meteorological 
data accessible [46]. This data was imported and processed using QGIS software 
(version 3.34.12). Land use and land cover (LULC) information was extracted from 
Sentinel-2 images using supervised classification with QGIS software (version 
3.34.12), while the soil type map was generated by classifying the soil type layers of 
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the Harmonised Global Soil Data (HGS) provided by Soil Grids, a global digital soil 
mapping system developed by ISRIC-World Soil Information, using QGIS software 
(version 3.34.12) [47]. The elevation and slope maps were derived from the Digital 
Terrain Model (DTM) of the study area, while the flow accumulation map was 
generated after filling in the DTM map of the study area to create the flow direction 
map from the Digital Terrain Model (DTM) using QGIS software. The distance-to-
watercourse map was generated using the buffer tool in the GIS environment, 
accounting for existing hydrographic networks. Areas within 200 m of the 
hydrographic network were considered particularly vulnerable to flooding, in line with 
previous studies [7,48]. 

It should be noted that the maps of the eight (8) flood hazard factors were 
reclassified to the same scale, ranging from 1 (very low) to 5 (very high), and then 
resampled to a 10 m spatial resolution. The factor classes, including distance to the 
hydrographic network, altitude, and precipitation, were generated using the natural 
breaks method, as in previous studies, because it is useful for assigning labels to an 
ordinary scale [7,49]. Land use and land cover (LULC) classes were obtained from 
[50], while slope and soil infiltration rate classes were estimated as suggested by 
[51,52], respectively. Due to the diversity of data spatial resolutions used in this study, 
a resampling process was applied to harmonise the image resolutions from different 
sources. This step, which is essential in the processing of spatial data, ensures the 
consistency and homogeneity of information, which is a prerequisite for reliable and 
comparable analyses. The bilinear method was chosen for resampling because it 
preserves visual continuity while ensuring smooth data integration. It estimates the 
value of new pixels by calculating a weighted average of their neighbouring pixels, 
which provides more consistent and accurate results when harmonising spatial 
resolutions. 

The Digital Terrain Model (10 m) resolution was used as a reference to adjust the 
resolutions of the other images. The 10 m spatial resolution was chosen to address 
heterogeneity in data resolution, which required standardisation to ensure consistent 
integration into the multi-criteria analysis. This resolution is particularly suited to the 
analysis of intra-urban heterogeneities in the city of Bol, where slight topographical 
variations cause water stagnation. It is also consistent with the resolution of the main 
spatial data used. Continuous variables were resampled using bilinear interpolation, 
while categorical variables were processed using the nearest neighbour method to limit 
spatial bias. 

Use of the AHP method 

Given that the various flood factors do not have equal importance in the flood 
generation process, Saaty’s Hierarchical Analysis Method (AHP) was applied to 
estimate the relative weights of each factor [7,53]. This multi-criterion decision-
making method, based on pairwise comparison matrices, enables the determination of 
the relative importance of each criterion and the selection of the most relevant options 
[53]. This decision-making method has the advantage of incorporating a consistency 
test, thereby reducing uncertainty in the weighting process, which explains its use in 
several previous studies [7,39,40,42]. The relative importance of the criteria is 
estimated on a scale of 1 to 9, from 1 (least important) to 9 (most important) (Table 
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3). 
As part of this study, a panel of five experts was assembled, comprising 

specialists in GIS/remote sensing, hydrology/hydraulics, geomorphology/paedology, 
urban planning/risk management, and architecture/urban planning, with an average of 
5 years of professional experience. Each expert completed a pairwise comparison 
matrix on the Saaty scale (1–9). The individual matrices were aggregated by geometric 
mean to obtain a consensus matrix, in accordance with AHP methodological 
recommendations. The final weights were calculated from the principal eigenvector 
and normalised to sum to 1. 

Table 3. Importance scales used in the pairwise comparison matrix [7,54]. 

Intensity of importance Definition Description 

1 Equal importance Two criteria contribute equally to the objective 

3 Moderate importance Experience and judgement favour one slightly over the other 

5 High importance Experience and judgement strongly favour one over the other 

7 Very high importance Experience and judgement strongly favour one criterion over another 

9 Extreme importance The evidence in favour of one criterion over another is of the highest possible validity. 

2,4,6,8 Intermediate values When agreement is necessary. 

To calculate the weights of each parameter, AHP begins by creating a pairwise 
comparison matrix (M = (Bij)) [7,54]. Each numerical value of M represents the 
relative importance of parameter i compared to parameter j. If Bij > 1, parameter i is 
more important than parameter j, while if Bij < 1, parameter i is less important than 
parameter j. If both parameters have the same importance, then Bij = 1. The 
mathematical values satisfy the condition given in Equation (2): 

Bij × Bji = 1 (2)

After developing the comparison matrix and defining the weights of the factors, 
the Consistency Ratio (CR) was calculated according to Equation (3) proposed by 
[54]: 

CR = 
CI

RI
 (3)

where CI is the Consistency Index, and RI is the Random Index, whose value depends 
on n, which is the number of criteria (factors). The value of the Consistency Index (CI) 
was obtained using Equation (4): 

𝐼 =
λ௠௔௫ − 𝑛

𝑛 − 1
 (4)

where λ max represents the largest eigenvalue of the matrix and n represents the 
number of parameters. The Random Index (RI) constant depends on n (Table 4). When 
RC < 0.1, the assessment is consistent and reliable results can be expected from the 
AHP model. 
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Table 4. Random index for calculating the consistency rate [7,54]. 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 

IA 0 0 0,58 0,90 1,12 1,24 1,32 1,41 1,45 1,49 1,51 1,48 1,56 

Development of the flood susceptibility index model 

The Flood Hazard Index (FHI) model proposed in this study accounted for eight (8) 
factors: precipitation, altitude, slope, land use and land cover, distance to watercourses, 
soil infiltration rate, drainage network density, and flow accumulation. Based on the 
estimated weights of these different factors and their scores (Table 4), the Flood Risk 
Index for each pixel (FHIj) was calculated using Equation (5) [7]: 

FHI = ෍ WJ × Xj (5)

where XJ is the ranking score of each class relative to layer J, and WJ is the weight of 
layer J. In addition, the Inflation Risk Index (FHI) has been divided into five (5) 
classes, namely: very low, low, moderate, high and very high. 

Relationship between the flood susceptibility map, data from the 2024 field surveys, 
and the built-up area of the city of Bol 

In this study, the relationship between the flood susceptibility map, field survey 
data collected in 2024, and the built-up area of the city of Bol was established using 
an approach like that employed in previous studies [56,57]. This involved using field 
data collected with GPS during surveys conducted in Bol in 2024, as well as mapping 
the city’s built-up areas using shapefile data from the municipality of Bol’s Geographic 
Information System (GIS) department. The two maps produced from this data were 
then superimposed on the flood susceptibility map, developed using GIS and the AHP 
method, to analyse the spatial relationships between the flood zones identified by the 
AHP model, the built-up area of the town of Bol, and the distribution of households 
observed in the field. 

Figure 3 presents the entire flowchart, illustrating the processes used to map 
flood risks in this study. 

 
Figure 3. Flowchart of the methodology used to map flood susceptibility in the city 
of Bol. 
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Uncertainty and sensitivity 

The weighting of factors using the Analytic Hierarchy Process (AHP) and the 
reclassification thresholds introduce uncertainty into the assessment of flood 
susceptibility, particularly in transition zones between classes. Due to insufficient data 
to conduct a formal uncertainty or sensitivity analysis, this dimension is recognised as 
a methodological limitation of the study. Nevertheless, it constitutes an important 
research perspective, particularly through the implementation of systematic sensitivity 
analyses, variants of fuzzy AHP, or hybrid approaches combining multi-criteria 
methods and statistical or machine learning models. 

2.4.2. Household survey 

The household surveys covered a sample of 385 people from different socio-
professional categories in 2024 in the city of Bol, with households randomly selected 
to avoid duplication. The questionnaires were created using Kobo Toolbox and 
administered using the Kobo Collect application, version 2023.2.4 [12]. The heads of 
each household were considered as samples. This approach has already been used in 
recent studies conducted in Central Africa [58]. In the field, vernacular was used for 
those who did not understand the interview language. We also used translators and 
local informants to translate and explain the interview to city dwellers. To do this, 
verbal consent was obtained from respondents before each interview began. These 
surveys collected information on the floods that occurred in the city of Bol in 2024. 

The survey used a questionnaire combining closed-ended and open-ended 
questions, a methodological approach also used in previous studies in Central Africa 
[58]. The data collected from households covers the following variables: 

 Socio-economic characteristics of respondents (gender, age, education level, 
occupation, household income); 

 Households’ perceptions of flooding; 
 Identify households affected by the 2024 floods. 

To determine the sample size, the inverse of the margin-of-error Equation (6) 
proposed by Daniel Schwartz was used. Let n be the sample size for a rounding of q, 
and we have the following: 

𝑛௤ =
[(𝑧௔)ଶ 𝑥 𝑃(1 − 𝑃)]

𝑑ଶ
 (6)

With Za: Fixed margin or margin reduced to a 5% risk (1.96), which corresponds to a 
95% confidence interval; d: margin of error set at 3% and P: proportion of the 
population of the town of Bol in the Lake Chad region (8.29%, or 0.0829 rounded to 
0.1).  

By using the digital application: 

𝑛௤ =
[(1,96)ଶ 𝑥 0,1(1 − 0,1)]

(3%)ଶ
 

𝑛௤ =385 

2.4. Data analysis and processing 

Spatial data were processed and analysed using QGIS 3.34.12, a Geographic 
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Information System, to integrate, structure, and exploit all the geographic data used in 
this study. The maps produced were then harmonised and finalised in Adobe Illustrator 
2024 to improve their readability and graphic quality. For the analysis of socio-
demographic and professional data and perceptions related to flooding, respondents’ 
answers from the Kobo Toolbox platform were exported as CSV files and imported 
into Excel. The processing included cleaning the databases (detecting and managing 
missing values, checking consistency, recoding and formatting variables). The 
Microsoft Office suite was also used to organise, structure and format the additional 
data tables. Additional validation was carried out by analysing the spatial distribution 
of households affected by flooding according to susceptibility classes. A χ² goodness-
of-fit test was used to assess whether the affected households were significantly 
concentrated in the moderate-to-high susceptibility classes. 

3. Results 

3.1. Responses from household survey participants 

3.1.1. Profiles of household survey respondents 

The results show (Table 5) a strong male predominance among respondents 
(87.01%) and a population predominantly of working age (85.46% aged 20 to 59). 
Analysis of place of birth shows that 61.56% of respondents are native to Bol and 
23.12% to Lac province, indicating a predominantly indigenous population. The level 
of education is heterogeneous, with a high proportion of households with no formal 
education or from Koranic schools (53.77%), although a quarter of respondents have 
a university degree (26.49%). The dominant activities are trade (31.43%) and agro-
pastoral and fishing activities (30.13%), both of which are highly sensitive to climate 
hazards. Finally, more than half of households (52.21%) have monthly incomes of less 
than 100,000 CFA francs. 

Table 5. Information on participants in the household survey.  

Information Category  Frequency  Percentage (%) 

Gender 
Male 335 87.01 

Female 50 12.99 

Age group 

Under 20 years old 13 3.38 

20 to 39 years old 196 50.91 

40 to 59 years old 133 34.55 

60 years old and over 43 11.17 

Place of birth 

Bol 237 61.56 

Lac Province 89 23.12 

Chad 43 11.17 

Outside Chad 16 4.15 

Level of education 

None 93 24.16 

Koranic school 114 29.61 

Primary education 31 8.05 

Secondary education 45 11.69 
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Table 5. (Continued). 

Information Category  Frequency  Percentage (%) 

Level of education University education 102 26.49 

Occupation 

Farmer/fisherman/agricultural worker 116 30.13 

Craftsman 14 3.64 

Private sector employee 56 14.55 

Public sector employee 39 10.13 

Retired 9 2.34 

Trader 121 31.43 

Student 12 3.12 

Unemployed 14 3.64 

Other 4 1.04 

Monthly income 

Less than 59,999 CFA francs 118 30.65 

60,000-99,999 CFA francs 83 21.56 

100,000-199,999 CFA francs 98 25.45 

200,000 CFA francs and above 86 22.34 

3.1.2. Perception of rainfall and flood recurrence in the city of Bol by the 
population 

The results presented in Table 6 highlight households’ perceptions of rainfall 
regularity and intensity, flooding frequency, accessibility of residential areas, presence 
of rainwater drainage systems, and their experience of the 2024 floods in the city of 
Bol. The results show that 70.91% of respondents consider rainfall regular, while 
29.09% consider it irregular. Regarding its intensity, 58.70% of respondents describe 
it as heavy, 30.39% as moderate, and 10.91% as light. Furthermore, 63.90% reported 
having been affected by the 2024 floods, compared to 36.10% who were not. And 
38.70% reported losing their homes, while 61.30% reported not losing them. As for 
the frequency of flooding, 49.87% of respondents perceived it as annual, while 31.43% 
said it occurred every 1 to 5 years, 16.62% every 6 to 10 years and only 2.08% every 
10 years or more. The results regarding the accessibility of residential areas during the 
rainy season show that most households (47.53%) face difficult-to-very difficult 
access conditions (37.66% difficult and 9.87% very difficult). Only 20.52% of 
households report easy accessibility, and 31.95% report passable access conditions. 
Furthermore, analysis of drainage or rainwater retention structures reveals a marked 
lack of hydraulic infrastructure, with 94.03% of households reporting the absence of 
such structures in their residential areas. Only 5.97% of respondents benefit from 
drainage systems. 

Table 6. Responses from participants in the household survey on perceptions of 
rainfall and the recurrence of flooding in the city of Bol. 

Variables Answers Frequency Percentage (%) 

Precipitation regularity 
Yes 273 70.91 

No 112 29.09 
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Table 6. (Continued). 

Variables Answers Frequency Percentage (%) 

Rainfall intensity 

Strong 226 58.70 

Medium 117 30.39 

Weak 42 10.91 

Impact of the 2024 floods 
Yes 246 63.90 

No 139 36.10 

Destroyed houses 
Yes 149 38.70 

No 236 61.30 

Flood frequency 

Every year 192 49.87 

1 to 5 years 121 31.43 

6 to 10 years 64 16.62 

Over 10 years 08 2.08 

Accessibility of the residential area during 
the rainy season 

Easy 79 20.52 

Fair 123 31.95 

Difficult 145 37.66 

Very difficult 38 9.87 

Existence of drainage or rainwater retention 
structures in their area 

Yes 23 5.97 

No 362 94.03 

3.2. Flood risks in the town of Bol 

3.2.1. Physical factors contributing to flood risk in the town of Bol 

The classes, ratings and surface coverage of the eight (8) flood risk factors 
(precipitation, altitude, slope, land use and cover, distance from watercourses, soil 
infiltration rate, drainage network density, and flow accumulation) were combined to 
identify the most exposed areas. The results of this compilation are presented in Table 
7. 

Table 7. Physical factors contributing to flood risk in the study area. 

Factors Class Notation 
Area coverage 

Ha Percentage (%) 

Rainfall intensity (mm) 

38–64 1 3.52 0.08 

65–82 2 960.02 23.09 

83–96 3 251.47 6.05 

97–118 4 2284.39 54.93 

119–157 5 659.15 15.85 

Elévation/Altitude (m) 

275–280 5 903.21 21.72 

280–285 4 1112.76 26.76 

285–290 3 688.44 16.55 

290–295 2 1175.51 28.27 

295–304 1 278.63 6.70 

 



Sustainable Social Development 2026, 3(4), 8348.  

16 

Table 7. (Continued). 

Factors Class Notation 
Area coverage 

Ha Percentage (%) 

Slope (%) 

0–0,5 5 1361.66 37.74 

0,5–1 4 982.20 23.62 

1–2 3 1365.86 32.84 

2–3 2 433.82 10.43 

3–4 1 15.02 0.36 

Land use and land cover (pixels) 

Water 5 603.14 14.50 

Built 4 749.30 18.02 

Bare soil 3 2244.20 53.97 

Crop 2 282.33 6.79 

Vegetation 1 279.58 6.72 

Distance from the hydrographic 
network (m) 

<200 5 552.99 13.30 

200–500 4 844.47 20.31 

501–1000 3 1495.99 35.97 

1001–2000 2 1231.29 29.61 

>2000 1 33.81 0.81 

Soil (infiltration rate, mm/h) 

Clayey 5 661.54 15.91 

Alluvial 
and 
hydromorp
hic 

4 16.02 0.38 

Sandy 3 2201.89 52.95 

Ferralitic/le
ached 

2 1184.44 28.48 

Poorly 
developed 

1 94.66 2.28 

Drainage density (m/m2) 

1–4 1 2487.35 59.81 

4–10 2 874.23 21.02 

10–16 3 582.42 14.01 

16–23 4 177.49 4.27 

23–34 5 37.07 0.89 

Flow accumulation (pixels) 

0–101 1 3990.56 95.96 

102–303 2 64.17 1.54 

304–551 3 19.28 0.46 

552–1135 4 54.34 1.31 

1136–2866 5 30.20 0.73 

The spatial distribution of various rainfall intensity classes (Figure 4; Table 7) 
indicates that the highest values (97–118 mm) cover more than half of the study area 
(54.94%), particularly around Bol, Tandal, and Berim. Conversely, locations in the 
north and northwest, such as Matafo 1, Matafo 3 East, Matafo 3 West, and 
Katchikitchiri, experience lower rainfall, while intermediate areas like Marafadjari, 
Tchaourom, and Maradouni North show average intensities. Topographically, the 
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northern and north-western regions correspond to the highest altitudes (275-285 m), 
whereas the lower zones (285–304 m), including Marafadjari, Tchaourom, Maradouni 
Nord, Bol, Tandal, Berim 1, Berim 2, and Bol Berim, are characterised by increased 
vulnerability to flooding (Figure 5; Table 7). Over 43.27% of the study area, notably 
Marafadjari, Tchaourom, Maradouni Nord, Bol, Tandal, Berim 1, Berim 2, and Bol 
Berim, has slopes between 1 and 3%, which correspond to the highest flood-sensitivity 
scores (Figure 6; Table 7). Land occupation and use also influence flood risk: built-
up areas, accounting for 18.02% of the land and mainly located in Matafo 1, 
Maradouni Nord, Bol, and Berim, exhibit a high flood score due to their low 
infiltration capacity. Conversely, vegetation zones (6.72%), crops (6.79%), and open 
water (14.50%) promote infiltration and runoff (Figure 7; Table 7). Proximity to the 
river network further amplifies risk. Areas less than 200 m and between 200 and 500 
m from watercourses, covering 13.30% and 20.31% of the area, respectively, are 
located in the sectors of Bol, Tandal, Berim 1, Berim 2, and Bol Berim, where flooding 
susceptibility is greatest (Figure 8; Table 7). Sandy soils, which predominate at 
52.95%, facilitate relatively effective infiltration, while clay soils (15.91%) and 
alluvial or hydromorphic soils (0.38%), predominantly found in Maradouni Nord, Bol, 
and Berim, tend to have low permeability, contributing to the high flood risk scores 
observed in these zones (Figure 9; Table 7). Drainage density in the study area is 
generally low: classes of 1–4 m/m2 and 4–10 m/m2 cover 59.81% and 21.02% of the 
surface area, respectively, and are associated with low risk. Conversely, the smaller 
zones with densities between 10 and 34 m/m2, which constitute 19.17% of the area, 
are associated with higher risk levels (Figure 10; Table 7). Lastly, the flow 
accumulation analysis shows that 95.96% of the area corresponds with low values (0–
101 pixels), located in the north, centre, and west. Higher classes, although sparse 
(1.54% to 0.46% for intermediate and 1.31% to 0.73% for the highest values), are 
mainly situated along drainage channels crossing Tandal, Bol Berim, Berim 1, and 
Berim 2, where runoff concentrates, increasing flood risk (Figure 11; Table 7). 

 
Figure 4. Rainfall intensity. 
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Figure 5. Altitude. 

 
Figure 6. Slope. 
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Figure 7. Land use and land cover. 

 
Figure 8. Distance from watercourses. 
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Figure 9. Soil type. 

 
Figure 10. Drainage density. 
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Figure 11. Accumulation of flows. 

Beyond surface proportions, the spatial distribution of classes reveals a clear 
structure of flood susceptibility: low-lying areas with very gentle slopes exhibit the 
highest levels of risk, as they promote stagnation and runoff accumulation. This pattern 
is further supported by the presence of hydromorphic or low-permeability soils, which 
restrict infiltration, and by urbanisation (LULC), which increases runoff. Therefore, 
regions where low slopes, proximity to the hydrographic network, built-up areas, and 
low-permeability soils coincide correspond to the main risk zones identified on the 
thematic maps (Figures 4–11), explaining their dominant role in overall susceptibility. 

3.2.2. Weighting of factors and flood risk index model 

Saaty’s AHP model was utilised to estimate the relative importance of factors 
contributing to the selected floods. The pairwise comparison matrix and the factor 
weightings are shown in Table 8. The AHP hierarchy reveals that factors related to 
hydrometeorological forcing (precipitation) and topographical context (altitude, slope) 
are the primary determinants of flood susceptibility. In the case of Bol, this dominance 
aligns with a flood dynamic driven by the intensity of inflows during the rainy season 
and the very limited capacity of low-lying areas to drain water. Land use and proximity 
to the hydrographic network further influence this dynamic by affecting infiltration, 
runoff, and flow connectivity. 
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Table 8. Matrice de comparaison par paires et poids estimés. 

Factors 
Flow 
accumulation 
(FA) 

Precipitation 
intensity (PI) 

Soil 
texture 
(ST) 

Land use 
and land 
cover 
(LULC) 

Slope 
(S) 

Elevation 
(E) 

Distance from 
watercourse 
(DF) 

Drainage 
density 
(DD) 

Weight 

Flow 
accumulation 
(FA) 

1 1/8 1/3 1/4 1/6 1/7 1/4 ½ 0.03 

Precipitation 
intensity (PI) 

8 1 8/3 2 4/3 8/7 2 4 0.23 

Soil texture (ST) 3 3/8 1 3/4 1/2 3/7 3/4 3/2 0.09 

Land use and 
land cover 
(LULC) 

4 1/2 4/3 1 2/3 4/7 1 2 0.11 

Slope (S) 6 3/4 2 7/4 1 6/7 3/2 3 0.17 

Elevation (E) 7 7/8 7/3 7/4 7/6 1 7/4 7/2 0.20 

Distance from 
watercourse 
(DF) 

4 1/2 4/3 1 2/3 4/7 1  0.11 

Drainage density 
(DD) 

2 1/4 2/3 1/2 1/3 2/7 1/2 1 0.06 

CR=0.0042 

Furthermore, the calculated RC value is 0.0042. Since it remains below the 
critical threshold of 0.1, the weights determined are deemed consistent and suitable 
for use in calculating the flood hazard index, as shown in Equation (7). 

FHI = 0,03XFA+ 0,23XPI + 0,09XST + 0,11XLULC + 0,17XS + 0,20XE + 0,11XDF + 0,06XDD (7)

Based on the factor weightings, rainfall intensity has the highest weight in the 
city of Bol, indicating that it is the primary factor contributing to the risk of flooding 
there. 

3.2.3. Flood susceptibility map for the city of Bol 

The flood susceptibility map (Figure 12) was created by combining eight 
physical factors using coefficients derived from the Analytical Hierarchy Process 
(AHP). The results (Figure 12 and Table 9) show that 16.19% of the city of Bol is at 
very high flood risk, while 28.08% is at high risk. These highly vulnerable zones are 
mainly clustered around Bol, Tandal, Berim 1, Berim 2, and Bol Berim. Conversely, 
very low and low risk levels cover 11.29% and 17.72% of the total area, primarily in 
the north and north-west, particularly in Matafo 3 East and West, Marafadjari, 
Tchaourom, Maradouni North, and Katchikitchiri. The medium risk class, accounting 
for 26.72% of Bol, encompasses intermediate zones situated between these extremes, 
notably around Marafadjari, Tchaourom, and Maradouni North. Additionally, the 
results indicate that high- and very high-risk zones correspond to areas with the highest 
rainfall intensities, confirming that rainfall intensity is the primary factor influencing 
physical vulnerability to flooding in Bol. Finally, the spatial analysis (Figure 12) 
reveals an uneven distribution of risk, reflecting significant spatial heterogeneity 
associated with the eight physical factors considered in this analysis. 
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Table 9. Area distribution of hazard levels. 

Danger level Surface area Percentage (%) 

Very low 469.28 11.29 

Low 736.95 17.72 

Medium 1111.06 26.72 

High 1167.83 28.08 

Very high 673.43 16.19 

TOTAL 4158.55 100 

 

Figure 12. Flood susceptibility map of the city of Bol using the AHP model. 

Figure 12 shows that moderate-to-high susceptibility classes are mainly 
concentrated in low-lying areas with gentle slopes, where hydrological connectivity is 
enhanced by the proximity of the drainage network. Areas with low susceptibility are 
more likely to be relatively higher and better drained. This spatial organisation is 
consistent with the maps of dominant factors (Figures 4–11), suggesting that 
susceptibility results from the combination of unfavourable topographical conditions 
and surface characteristics that limit infiltration. 
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3.3. Relationship between the flood susceptibility map, data from field 
surveys conducted in 2024, and the built-up area of the city of Bol 

3.3.1. Relationship between the flood susceptibility map and the built-up area of 
the city of Bol in 2024 

Of the city of Bol’s total area of 4,158.55 ha, built-up areas occupy 749.30 ha, or 
18.02% of the total urban area. The superimposition of the flood susceptibility map, 
developed from remote sensing data and the combined GIS-AHP approach, with land 
use is shown in Figure 13, where built-up areas appear in pink. The results (Figure 
13 and Table 10) indicate that 41.95% (314.37 ha) of the built-up area is in areas 
classified as having a very low to low flood risk (15.11% very low and 26.84% low), 
which reflects a relatively limited exposure to flooding. On the other hand, 47.12% 
(353.07 ha) of the built-up area is in areas of moderate sensitivity, while 10.93% (81.86 
ha) is in areas characterised by high to very high risk (including 10.57% at high risk 
and 0.36% at very high risk). As illustrated in Figure 13, a significant proportion of 
the built-up area is in moderate to high susceptibility classes, indicating potential 
exposure of the habitat to flooding and justifying the use of urban-scale mapping to 
guide zoning and risk reduction measures. 

 

Figure 13. Comparison of the flood susceptibility map with the extent of built-up 
areas in 2024. 

Table 10. Distribution of built-up area according to hazard level. 

Danger level Built-up area (ha) Percentage (%) 

Very low 113.22 15.11 

Low 201.15 26.84 

Medium 353.07 47.12 

High 79.19 10.57 

Very high 2.67 0.36 

TOTAL 749.30 100 
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3.3.2. Relationship between the flood susceptibility map and household surveys 
conducted in Bol in 2024 

The results of the comparison between the flood susceptibility map developed 
using GIS and the AHP method (Figure 14) and the field survey data collected in 2024 
are presented in Figure 14 and Table 11. The 385 households surveyed are 
georeferenced and represented as points on the map (Figure 14). The results indicate 
that 38.96% of households are in areas characterised by very low to low risk (9.35% 
and 29.61%, respectively), while 39.74% are in areas of moderate risk. Furthermore, 
21.30% of households are in high-risk areas, while no households are recorded in areas 
classified as very high risk. A χ² goodness-of-fit test applied to the distribution of 
households surveyed according to flood susceptibility classes reveals a highly 
significant difference from a uniform distribution (χ² = 191.95; ddl = 4; p < 0.001), 
indicating a marked concentration of households in areas of moderate to high 
susceptibility. 

 
Figure 14. Comparison of the flood susceptibility map with the 2024 household 
surveys. 

Table 11. Distribution of households according to level of risk. 

Danger level Number of households Percentage (%) 

Very low 36 09,35 

Low 114 29,61 

Medium 153 39,74 

High 82 21,30 

Very high 00 00 

Total 385 100 
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4. Discussion 

The results of this research show that the households surveyed in Bol are 
characterised by a strong male predominance (87.01%) and a population mainly of 
working age (20–59 years: 85.46%), which is common in surveys conducted in 
Sahelian cities, where heads of households and main respondents are predominantly 
men, due to socio-cultural norms and gendered division of roles [59]. This 
configuration influences risk perception and adaptation choices, which are often made 
by household heads rather than by all household members, particularly women and the 
elderly. Furthermore, analysis of place of birth reveals that more than 84% of 
respondents are natives of Bol or the Lake Province, indicating a largely indigenous, 
permanently settled population. This long-term residence may reinforce empirical 
knowledge of risks, particularly flooding, as shown by several studies in sub-Saharan 
Africa, where local populations develop adaptation strategies based on accumulated 
experience [60,61]. However, this familiarity with hazards can also promote a 
normalisation of risk, as illustrated by the fact that nearly half of those surveyed 
(49.87%) perceive flooding as an annual phenomenon. This process has already been 
documented in the literature on climate risk perception by Doussoumou et al. [62] and 
Kumaresen et al. [63], who show that the near-annual recurrence of floods tends to 
render them “ordinary” hazards. Furthermore, the majority perception of regular 
(70.91%) and intense (58.70%) rainfall is consistent with several studies conducted in 
sub-Saharan Africa, which highlight an increase in the intensity of extreme rainfall 
rather than a uniform increase in annual rainfall, thereby increasing the risk of urban 
flooding [64,65]. This rainfall pattern promotes high runoff volumes over short 
periods, quickly exceeding the soil’s and urban drainage systems’ absorption and 
drainage capacities, thereby increasing susceptibility to flooding. These perceptions 
and physical conditions are reflected in the high proportion of households reporting 
that they were affected by the 2024 floods (63.90%) and suffered loss of housing 
(38.70%), which is consistent with the studies by Allarané et al. [28] on the direct 
impacts of flooding in N’Djamena, where material damage is one of the most frequent 
and severe consequences.  

In spatial terms, the flood susceptibility mapping carried out in Bol highlights the 
central role of the combination of physical flood factors, namely rainfall intensity, 
altitude, slope, land use and cover, distance to watercourses, soil infiltration capacity, 
drainage network density, and flow accumulation in a GIS environment. The high 
weighting given to rainfall intensity in the AHP analysis confirms its decisive role, as 
shown in numerous previous studies [24,36,41]. However, the literature emphasises 
that the dominant factor varies according to the hydro-geomorphological and urban 
context: some studies give greater weight to distance from watercourses [7,38], soil 
properties [45], altitude [23], slope [38,43], land use and cover [40], flow 
accumulation [27] or drainage network density [38]. The case of Bol is distinguished 
by its location in a low-relief lake plain, where slight variations in altitude are 
sufficient to promote water accumulation and stagnation. 

The results of this study show that 44.27% of the city of Bol is exposed to a high 
to very high risk of flooding (28.08% and 16.19%, respectively). These areas mainly 
correspond to agricultural polders and areas adjacent to watercourses. This high 
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vulnerability can be explained by a combination of intense rainfall, gentle slopes, low 
altitudes, proximity to watercourses and the presence of clay soils, which promote 
water accumulation and stagnation. These results are consistent with the conclusions 
of [66,67]. They also agree with those of Quesada-Román [68] in Costa Rica, who 
emphasise that the highest flood risks are concentrated in areas with low slopes, low 
altitudes and clay soils. Furthermore, 26.72% of the city of Bol’s area has a medium 
level of risk, indicating significant vulnerability to flooding. In contrast, low- and very 
low-risk areas cover only 29.01% of the total area (17.72% and 11.29% respectively). 
These areas are mainly located in the north and north-west, where higher altitudes, 
greater distance from watercourses, better soil permeability, better drainage and 
relatively low rainfall contribute to reducing the risk of flooding. These conclusions 
are consistent with those of [7,69], which emphasised that topographical, pedological 
and other environmental factors play an important role in reducing flood risks.  

The relative contribution of these factors was quantified using a multi-criteria 
decision-making approach based on the analytical hierarchy process (AHP) developed 
by Thomas Saaty [54], which relies on pairwise comparisons and the estimation of 
normalised weights reflecting the relative importance of each parameter. The 
analytical hierarchy process (AHP) is a structured decision-making framework that 
helps prioritise and select the best option by breaking a complex decision into a 
hierarchy of objectives, criteria, and alternatives [26]. It improves decision-making by 
providing clearer visualisation and enhanced mapping capabilities, thereby facilitating 
the development of hazard maps [18]. Nevertheless, AHP is subject to several 
methodological criticisms, particularly its unbalanced judgment levels, arbitrary 
rankings, high subjectivity in scoring, and inability to accurately handle the 
uncertainty associated with pairwise comparisons [70,71]. Furthermore, psychological 
research has shown that nine items represent the maximum number a person can 
reliably rank and compare simultaneously; hence, it is strongly recommended to use 
no more than nine criteria [7,72], which highlights the limitation of this study to eight 
(8) factors. Despite these limitations, AHP remains an effective and relevant method 
for risk mapping [53,73], as it allows complex decisions to be structured and expert 
knowledge to be integrated in contexts where data are limited, while ensuring rigorous 
control over the consistency of judgments. 

An important methodological contribution of this study lies in the validation of 
results by field data. The statistically significant concentration of affected households 
in the moderate-to-high susceptibility classes, as highlighted by the χ² test, reinforces 
the credibility of the GIS-AHP model. Few GIS-AHP studies include explicit socio-
spatial validation, often limiting themselves to a visual comparison of maps and 
observations [27,57]. In this respect, the approach adopted is in line with the 
recommendations of ref. [74], which calls for better coordination between spatial 
modelling and social data to improve the operational relevance of vulnerability maps. 

However, this study’s methodological limitations must be discussed. The 
subjectivity inherent in AHP, linked to expert judgements and weighting choices, has 
been highlighted by Malczewski [75], who warns against the sensitivity of results to 
methodological decisions. Feizizadeh et al. [76] therefore recommend using sensitivity 
analyses or variants, such as fuzzy AHP, to better integrate the uncertainty associated 
with pairwise comparisons. The use of moderate-resolution global data is a common 
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compromise in regions with low local data production capacities. However, as Merz 
et al. [77] point out, this choice may limit accuracy at the intra-urban scale and 
warrants caution in the detailed interpretation of results, particularly in transition zones 
between susceptibility classes. Furthermore, harmonising data from global sources 
and heterogeneous spatial resolutions can introduce smoothing effects, potentially 
affecting local spatial accuracy, particularly in transition zones between susceptibility 
classes. The absence of formal uncertainty and sensitivity analysis is therefore a 
significant limitation of this study. 

Despite these limitations, the susceptibility map produced is a relevant 
operational tool for flood risk management in Bol. It identifies priority areas for urban 
development, drainage infrastructure planning and housing adaptation. It can be used 
not only to raise awareness among communities, construction stakeholders, and 
decision-makers about the most exposed areas, but also to help them implement 
measures to strengthen their resilience, such as construction techniques, material 
choices, and construction types specific to each area. In addition, the flood risk 
susceptibility map plays a key role in land use and urban planning by providing 
information to define the functions, priorities, and constraints specific to each area of 
the city. This approach is important because over the last two decades, the frequency 
of flooding has increased, not only due to climate variability but also to anthropogenic 
factors such as rapid and unplanned urbanisation, deforestation, increased extraction 
of aggregates for construction, inappropriate agricultural practices, and poor soil and 
waste management [7,65,78,79]. This approach provides a solid scientific basis for 
supporting decision-making and strengthening urban resilience. 

5. Conclusions 

This study aims to characterise the physical susceptibility to flooding in the city 
of Bol in order to contribute to better management of a risk that has become 
increasingly recurrent in this Sahelian urban context. It also assessed the combined 
contribution of remote sensing, geographic information systems (GIS) and the 
Analytic Hierarchy Process (AHP) to identifying and prioritising areas vulnerable to 
flooding. 

Methodologically, the study used eight key physical factors: rainfall intensity, 
altitude, slope, land use and cover, distance to watercourses, soil infiltration capacity, 
drainage network density and flow accumulation, integrated into a GIS environment. 
Weighting these factors using AHP produced a susceptibility map showing that 
44.27% of Bol’s urban area is highly to very highly susceptible to flooding, reflecting 
significant structural exposure linked to local hydro-geomorphological conditions and 
unplanned occupation of low-lying areas. Field surveys also revealed a predominantly 
male, active, and indigenous population, characterised by a high dependence on 
economic activities sensitive to climate hazards, as well as a marked perception of 
intense rainfall and recurrent flooding, as confirmed by the significant impacts of the 
2024 events. 

The results obtained highlight the value of the GIS-AHP approach as a decision-
making tool for urban planning, drainage infrastructure design and prioritisation of 
areas for flood risk reduction interventions. As such, the susceptibility map produced 
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is a relevant operational tool for local decision-makers, urban planners, architects and 
disaster management services. 

However, the scope of this study must be interpreted in light of several 
limitations. On the one hand, the analysis focuses exclusively on physical vulnerability 
(susceptibility) and omits the dimensions of exposure and adaptive capacity, which are 
essential to a comprehensive assessment of flood risk. Secondly, the use of global 
datasets, due to the limited availability of high-resolution local data, may affect the 
spatial accuracy of the results, particularly at the intra-urban scale. Finally, the lack of 
in-depth quantitative validation and formal analysis of uncertainties in factor 
weighting is a significant methodological limitation. 

Future research should therefore focus on an integrated assessment of flood risk, 
combining susceptibility, exposure and adaptive capacity, while utilising higher-
resolution local data and quantitative validation and sensitivity analysis methods. 
Exploring complementary approaches, such as fuzzy AHP or hybrid methods, would 
also allow for better consideration of the uncertainties associated with expert 
judgements. 

Despite these limitations, this study makes a significant scientific and operational 
contribution to understanding flood vulnerability in the city of Bol and more broadly 
in Sahelian cities. It provides a solid basis for integrating flood risk management into 
urban development policies and local climate change adaptation strategies in the Lac 
province of Chad. 
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