Solutions of higher-order fractional boundary value problems with fractional left-focal like conditions

Jeffrey W. Lyons

Article ID: 3577
Vol 3, Issue 2, 2025
DOI: https://doi.org/10.54517/mss3577
Received: 9 April 2025; Accepted: 6 May 2025; Available online: 23 June 2025; Issue release: 30 June 2025


Download PDF

Abstract

We consider a higher-order Riemann-Liouville fractional boundary value problem with two-point boundary conditions. The higher-order fractional conditions are left-focal inspired. Using fixed point results, the existence and nonexistence of positive solutions are conditioned upon the size of the parameter λ in the differential equation. Our approach involves constructing a Green function by combining the Green’s functions of a fractional problem of lower order and a left focal boundary value problem. We then use induction to increase the order. An example is provided to illustrate the existence and nonexistence regions.


Keywords

Riemann-Liouville; left-focal; fixed point; existence; nonexistence; convolution; induction


References

1.       Eloe PW, Neugebauer JT. Convolutions and Green’s functions for two families of boundary value problems for fractional differential equations. Electronic Journal of Differential Equations. 2016; 2016: 1–13.

2.       Lyons JW, Neugebauer JT. Two point fractional boundary value problems with a fractional boundary condition. Fractional Calculus and Applied Analysis. 2018; 21(2): 442–461.

3.       Neugebauer JT, Wingo AG. Positive solutions for a fractional boundary value problem with lidstone-like boundary conditions. Kragujevac Journal of Mathematics. 2024; 48(2): 309–322.

4.       Graef JR, Qian C, Yang B. A three point boundary value problem for nonlinear fourth order differential equations. Journal of Mathematical Analysis and Applications. 2003; 287(1): 217–233.

5.       Graef JR, Yang B. Existence and nonexistence of positive solutions of fourth order nonlinear boundary value problems. Applicable Analysis. 2000; 74(1–2): 201–214.

6.       Graef JR, Yang B. Positive solutions to a multi-point higher order boundary-value problem. Journal of Mathematical Analysis and Applications. 2006; 316(2): 409–421.

7.       Graef JR, Henderson J, Yang B. Positive solutions of a nonlinear higher order boundary-value problem. Electronic Journal of Differential Equations. 2007; 2007(45): 1–10.

8.       Agarwal RP, O’Regan D, Staněk S. Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. Journal of Mathematical Analysis and Applications. 2010; 371(1): 57–68. doi: 10.1016/j.jmaa.2010.04.034

9.       Bai Z, Lü H. Positive solutions for boundary value problem of nonlinear fractional differential equation. Journal of Mathematical Analysis and Applications 2005; 311(2): 495–505. doi: 10.1016/j.jmaa.2005.02.052

10.    Dimitrov ND, Jonnalagadda JM. Existence and nonexistence results for a fourth-order boundary value problem with sign-changing Green’s function. Mathematics. 2024; 12(16): 1–12.

11.    Henderson J, Luca R. Existence of positive solutions for a singular fraction boundary value problem. Nonlinear Analysis: Modelling and Control. 2017; 22(1): 99–114.

12.    Kaufmann ER, Mboumi E. Positive solutions of a boundary value problem for a nonlinear fractional differential equation. Electronic Journal of Qualitative Theory of Differential Equations. 2008; 2008(3): 1–11.

13.    Rehman MU, Khan RA, Eloe PW. Positive solutions of nonlocal boundary value problem for higher order fractional differential system. Dynamic Systems and Applications. 2011; 20: 169–182.

14.    Yang B. Upper estimate for positive solutions of the (p, n − p) conjugate boundary value problem. Journal of Mathematical Analysis and Applications. 2012; 390(2): 535–548. doi: 10.1016/j.jmaa.2012.01.054

15.    Youssri YH, Atta AG. Chebyshev Petrov–Galerkin method for nonlinear time-fractional integro-differential equations with a mildly singular kernel. Journal of Applied Mathematics and Computing. 2025; 1–21. doi: 10.1007/s12190-025-02371-w

16.    Albeladi G, Gamal M, Youssri YH. G-Metric spaces via fixed point techniques for Ψ-contraction with applications. Fractal and Fractional. 2025; 9(3): 1–31. doi: 10.3390/fractalfract9030196

17.    Lyons JW, Neugebauer JT, Wingo AG. Existence and nonexistence of positive solutions for fractional boundary value problems with Lidstone-inspired fractional conditions. Mathematics. 2025; 13(8): 1–15.

18.    Taema MA, Zeen El-Deen MR. Youssri YH. Fourth-kind Chebyshev operational tau algorithm for fractional Bagley-Torvik equation. Frontiers in Scientific Research and Technology. 2025; 11(1): 1–8.

19.    Youssri YH, Alnaser LA, Atta AG. A spectral collocation approach for time-fractional Korteweg-deVries-Burgers equation via first-kind Chebyshev polynomials. Contemp. Math. 2025; 6(2): 1501–1519. doi: 10.37256/cm.6220255948

20.    Diethelm K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer; 2010.

21.    Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. In: North-Holland Mathematics Studies. Elsevier Science B.V.; 2006. Volume 204.

22.    Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience; 1993.

23.    Podlubny I. Fractional Differential Equations. Academic Press; 1999.

24.    Eloe P, Lyons JW, Neugebauer JT. An ordering on Green’s functions for a family of two-point boundary value problems for fractional differential equations. Communications in Applied Analysis. 2015; 19: 453–462.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/