Abstract
If general relativity is correct, then the origin of the universe is a simple mathematical problem. The Friedmann equation in cosmology is a well-structured ordinary differential equation, and the global properties of its solutions can be qualitatively analyzed by the phase-trajectory method. In this paper we show that the total energy density of matter in the universe is positive, and the total pressure near the Big Bang is negative. By analyzing the global properties of the solutions to the Friedmann equation according to these two conditions of state functions, we find that the Big Bang is impossible, and the space must be a closed 3-dimensional sphere, the cosmological constant is likely to be zero, and the evolution of the universe should be cyclic. The analysis and the proof are simple and straight forward, therefore these conclusions should be reliable.
Keywords
space curvature; cosmological constant; negative pressure; big bang
References
Weinberg S. Gravitation and Cosmology. New York: Wiley; 1972.
Gu YQ. Dynamical Reason for a Cyclic Universe. Symmetry. 2021; 13(12): 2272. doi: 10.3390/sym13122272
Caldwell RR, Dave R, Steinhardt PJ. Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters. 1998; 80(8): 1582–1585. doi: 10.1103/physrevlett.80.1582
Turner MS. Dark Matter and Dark Energy in the Universe. Physica Scripta. 2000; T85(1): 210. doi: 10.1238/physica.topical.085a00210
Peebles PJE, Ratra B. The cosmological constant and dark energy. Reviews of Modern Physics. 2003; 75(2): 559–606. doi: 10.1103/revmodphys.75.559
Carroll SM. Quintessence and the Rest of the World: Suppressing Long-Range Interactions. Physical Review Letters. 1998; 81: 3067. doi: 10.1103/PhysRevLett.81.3067
Zlatev I, Wang LM, Steinhardt PJ. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Physical Review Letters. 1999; 82: 896-899. doi: 10.1103/PhysRevLett.82.896
Faraoni V. Inflation and quintessence with nonminimal coupling. Physical Review D. 2000; 62: 023504. doi:10.1103/PhysRevD.62.023504
Gasperini M, Piazza F, Veneziano G. Quintessence as a runaway dilaton. Physical Review D. 2002; 65: 023508. doi: 10.1103/PhysRevD.65.023508
Capozziello S. Curvature Quintessence. International Journal of Modern Physics D. 2002; 11: 483. doi: 10.1142/S0218271802002025
Caldwell RR, Linder EV. Limits of Quintessence. Physical Review letter. 2005; 95: 141301. doi: 10.1103/PhysRevLett.95.141301
Astashenok AV, Nojiri S, Odintsov SD, Scherrer RJ. Scalar dark energy models mimicking ΛCDM with arbitrary future evolution. Physics Letters B. 2012; 713: 145-153. doi: 10.1016/j.physletb.2012.06.017
Tsujikawa S. Quintessence: A review. Quantum Gravity. 2013; 30: 214003. doi: 10.1088/0264-9381/30/21/214003
Shahalam M, Pathak SD, Verma MM, et al. Dynamics of interacting quintessence. The European Physical Journal C. 2015; 75(8): 395. doi: 10.1140/epjc/s10052-015-3608-1
Han C, Pi S, Sasaki M. Quintessence saves Higgs instability. Physics Letters B. 2019; 791: 314-318. doi: 10.1016/j.physletb.2019.02.037
Sahni V. The cosmological constant problem and quintessence. Classical and Quantum Gravity. 2002; 19(13): 3435–3448. doi: 10.1088/0264-9381/19/13/304
S. Turner M, Huterer D. Cosmic Acceleration, Dark Energy, and Fundamental Physics. Journal of the Physical Society of Japan. 2007; 76(11): 111015. doi: 10.1143/jpsj.76.111015
Ishak M. Remarks on the Formulation of the Cosmological Constant/Dark Energy Problems. Foundations of Physics. 2007; 37(10): 1470–1498. doi: 10.1007/s10701-007-9175-z
Szydłowski M, Kurek A, Krawiec A. Top ten accelerating cosmological models. Physics Letters B. 2006; 642(3): 171–178. doi: 10.1016/j.physletb.2006.09.052
Szydłowski M. Cosmological Zoo—accelerating models with dark energy. Journal of Cosmology and Astroparticle Physics. 2007; 2007(09): 007–007. doi: 10.1088/1475-7516/2007/09/007
Copeland EJ, Sami M, Tsujikawa S. Dynamics of Dark Energy. International Journal of Modern Physics D. 2006; 15(11): 1753–1935. doi: 10.1142/s021827180600942x
Linder EV. Theory challenges of the accelerating Universe. Journal of Physics A: Mathematical and Theoretical. 2007; 40(25): 6697–6705. doi: 10.1088/1751-8113/40/25/s14
Bull P, Akrami Y, Adamek J, et al. Beyond ΛCDM: Problems, solutions, and the road ahead. Physics of the Dark Universe. 2016; 12: 56–99. doi: 10.1016/j.dark.2016.02.001
Steinhardt PJ, Turok N. A Cyclic Model of the Universe. Science. 2002; 296(5572): 1436–1439. doi: 10.1126/science.1070462
Barrow JD, Kimberly D, Magueijo J. Bouncing universes with varying constants. Classical and Quantum Gravity. 2004; 21(18): 4289–4296. doi: 10.1088/0264-9381/21/18/001
Novello M, Bergliaffa S. Bouncing cosmologies. Physics Reports. 2008; 463(4): 127–213. doi: 10.1016/j.physrep.2008.04.006
Liu L, Jiang Y, Qian Z. The Inflationary Universe Scenario. In: 10–35 Sec. after the Big Bang. Progress in Physics. 1989; 9(2): 121–187.
Gu YQ. Clifford Algebra, Lorentz Transformation and Unified Field Theory. Advances in Applied Clifford Algebras. 2018; 28(2). doi: 10.1007/s00006-018-0852-0
Gu YQ. Structure of the Star with Ideal Gases. Journal of High Energy Physics, Gravitation and Cosmology. 2022; 08(01): 100–114. doi: 10.4236/jhepgc.2022.81008
Rong-Gen C, Li-Ming C, Li L, et al. Spacetime singularities and cosmic censorship conjectures. SCIENTIA SINICA Physica, Mechanica & Astronomica. 2022; 52(11): 110401. doi: 10.1360/sspma-2022-0069
Gu YQ. Natural Coordinate System in Curved Space-Time. Journal of Geometry and Symmetry in Physics. 2018; 47: 51–62. doi: 10.7546/jgsp-47-2018-51-62