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1. Introduction

Let m,n ∈ N, m ≥ 3, with α ∈ (m − 1,m] and β ∈ [1,m − 1]. Consider the
following Riemann-Liouville fractional boundary value problem

Dα+2n
0+

u(t) + (−1)nλg(t)f(u) = 0, 0 < t < 1 (1)

subject to the left-focal inspired fractional boundary conditions

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ
0+
u(1) = 0,

Dα+2l+1
0+

u(0) = Dα+2l
0+

u(1) = 0, l = 0, 1, . . . , n− 1
(2)

We stipulate λ > 0 is a positive parameter and f : [0,∞) → [0,∞) and g :

[0, 1] → [0,∞) are continuous functions such that g(t) ̸≡ 0 on [0, 1]. We are concerned
with the existence and nonexistence of positive solutions to Equations (1) and (2).

Of interesting note is the alternating component of the nonlinearity. This is due to
the sign-changing of the Green’s function whenever the order is increased by a factor of
2. This added piece ensures that the Green’s function remains positive for any choice of
n. Additionally, we demonstrate through induction how to achieve any chosen higher
order 2n.

To that end, we construct the Green’s function associated with Equations (1) and
(2) following the procedure outlined in [1]. The idea is to convolve the Green’s function
G0(t, s) for a lower-order problem with the Green’s function of a left-focal boundary
value problem. Induction is subsequently implemented to increase the order of the
Green’s function. Next, we state properties of the lower-order Green’s functions found
in [2], and show that these properties are inherited by the higher-order Green’s function.
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Finally, we apply this framework in an implementation of theKrasnosel’skii Fixed Point
Theorem.

Themajor impetus for this result comes from twoworks, namely [2] and [3]. In the
former, Lyons and Neugebauer implemented the convolution of the Green’s function
for a fractional order boundary value problem with that of the Green’s function for
an ordinary boundary value problem. Subsequently, Neugebauer and Wingo increased
the order of the fractional boundary value problem by factors of 2n by applying an
induction argument. These twoworks in themselves are generalizations of the existence
and nonexistence results from the early 2000s by Graef and all [4–6]. Their motivation
initially was proving the existence of positive solutions to beam equations, which are
fourth-order ordinary boundary value problems, using the Krasnosel’skii Fixed Point
Theorem. However, in [7], the authors later generalized to an n-th order problem.

This work leverages existing manuscripts on fractional boundary value problems
that utilize Krasnosel’skii’s Fixed Point Theorem. A wide array of fixed point theorems
have been utilized to establish the existence or nonexistence of positive solutions for
similar problems, as seen in [8–15]. In this work, we posit parameter constraints on
λ formulated in terms of the liminf and limsup of the nonlinearity f . The inherited
Green’s function properties are critically important to the implementation of the Fixed
Point Theorem. For further reading of recent work on proving the existence of solutions
for fractional boundary value problems, we refer the reader to [16–19].

The remainder of the work is organized as follows. In section two, we introduce
key definitions related to the Riemann-Liouville fractional derivative and present
Krasnosel’skii’s Fixed Point Theorem. The next two sections focus on constructing
the Green’s function using convolution and induction and proving crucial properties.
In sections five and six, we establish existence and nonexistence results based upon the
parameter λ. To conclude, we present an example.

2. Preliminaries and the Fixed Point Theorem

We begin with definitions of the Riemann-Liouville fractional integral and
derivative. We refer to [20–23] for further study of fractional calculus and fractional
differential equations.
Definition 1. Let ν > 0. The Riemann-Liouville fractional integral of a function u of
order ν, denoted Iν0+u, is defined as

Iν0+u(t) =
1

Γ(ν)

∫ t

0
(t− s)ν−1u(s)ds,

provided the right-hand side exists.
Definition 2. Let n denote a positive integer and assume n − 1 < α ≤ n. The
Riemann-Liouville fractional derivative of order α of the function u : [0, 1] → R,
denoted Dα

0+u, is defined as

Dα
0+u(t) =

1

Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1u(s)ds = DnIn−α

0+
u(t),
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provided the right-hand side exists.
Now, we present Krasnosel’skii’s Fixed Point Theorem.

Theorem 1 (Krasnosel’skii Fixed Point Theorem). Let B be a Banach space, and let
P ⊂ X be a cone in P . Assume that Ω1, Ω2 are open sets with 0 ∈ Ω1, and Ω1 ⊂ Ω2.

Let T : P ∩ (Ω2\Ω1) → P be a completely continuous operator such that either
1) ∥Tu∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω1, and ∥Tu∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω2; or
2) ∥Tu∥ ≤ ∥u∥, u ∈ P ∩ ∂Ω1, and ∥Tu∥ ≥ ∥u∥, u ∈ P ∩ ∂Ω2.

Then, T has a fixed point in P ∩ (Ω2\Ω1).

3. The Green’s function

Now, we construct the Green’s function used for Equations (1) and (2) by utilizing
induction with the convolution of a lower-order problem and a left-focal problem. The
procedure is similar to that found in [3]. We include it here for completeness and note
that all integrals herein are Riemann.

The Green’s function for the left-focal boundary value problem

−u′′ = 0, 0 < t < 1, u′(0) = 0, u(1) = 0,

is given by

Gleft(t, s) =

{
1− s, 0 ≤ s < t ≤ 1,

1− t, 0 ≤ t < s ≤ 1.

The Green’s function for the Riemann-Liouville fractional two-point boundary
value problem

−Dα
0+u = 0, 0 < t < 1, u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ

0+
u(1) = 0

is given by ([24])

G0(t, s) =
1

Γ(α)


tα−1(1− s)α−1−β − (t− s)α−1, 0 ≤ s < t ≤ 1,

tα−1(1− s)α−1−β , 0 ≤ t ≤ s < 1.

For k = 1, . . . , n− 1, recursively define Gk(t, s) by

Gk(t, s) = −
∫ 1

0
Gk−1(t, r)Gleft(r, s)dr.

Then,

Gn(t, s) = −
∫ 1

0
Gn−1(t, r)Gleft(r, s)dr (3)

is the Green’s function for

−Dα+2n
0+

u(t) = 0, 0 < t < 1,
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with boundary conditions (2), and Gn−1(t, s) is the Green’s function for

−D
α+2(n−1)
0+

u(t) = 0, 0 < t < 1,

with boundary conditions

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ
0+
u(1) = 0,

Dα+2l+1
0+

u(0) = Dα+2l
0+

u(1) = 0, l = 0, 1, . . . , n− 2.

We proceed with induction. For the base case k = 1, consider the linear
differential equation

Dα+2
0+

u(t) + h(t) = 0, 0 < t < 1,

satisfying the boundary conditions

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ
0+
u(1) = 0,

Dα+1
0+

u(0) = 0, Dα
0+u(1) = 0.

Now, we make a change of variable

v(t) = Dα+2−2
0+

u(t),

so that

D2v(t) = D2Dα+2−2
0+

u(t) = Dα+2
0+

u(t) = −h(t).

Since v(t) = Dα
0+u(t),

v′(0) = Dα+1
0+

u(0) = 0 and v(1) = Dα
0+u(1) = 0.

Therefore, v satisfies the left-focal boundary value problem

v′′ + h(t) = 0, 0 < t < 1,

v′(0) = 0, v(1) = 0.

The solution of this boundary value problem is

v(t) =

∫ 1

0
Gleft(t, s)h(s)ds.

Additionally, u now satisfies a lower-order boundary value problem,

Dα
0+u(t) = v(t), 0 < t < 1,

u(i)(0) = 0, i = 0, 1, . . . ,m− 2, Dβ
0+
u(1) = 0.
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The solution of the lower-order fractional boundary value problem is

u(t) =

∫ 1

0
G0(t, s)(−v(s))ds

=

∫ 1

0
G0(t, s)

(
−
∫ 1

0
Gleft(s, r)h(r)ds

)
dr

=

∫ 1

0

(∫ 1

0
−G0(t, s)Gleft(s, r)ds

)
h(r)dr.

Therefore,

u(t) =

∫ 1

0
G1(t, s)h(s)ds,

where

G1(t, s) = −
∫ 1

0
G0(t, r)Gleft(r, s)dr.

For the inductive step, the argument is similar. Assume that k = n−1 is true, and
consider the linear differential equation

Dα+2n
0+

u(t) + k(t) = 0, 0 < t < 1,

satisfying boundary conditions (2).
We make a similar change of variable

v(t) = D
α+2(n−1)
0+

u(t) = Dα+2n−2
0+

u(t),

so that

D2v(t) = Dα+2n
0+

= −k(t),

and

v′(0) = D
α+2(n−1)+1
0+

u(0) = 0 and v(1) = D
α+2(n−1)
0+

v(1) = 0.

Thus, v(t) satisfies the left-focal boundary value problem

v′′ + k(t) = 0, 0 < t < 1,

v′(0) = 0, v(1) = 0,

while u(t) satisfies a lower-order problem

D
α+2(n−1)
0+

u(t) = v(t), 0 < t < 1,

u(0) = 0, Dβ
0+
u(1) = 0,

Dα+2l+1
0+

u(0) = Dα+2l
0+

u(1) = 0, l = 0, 1, . . . , n− 2.
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By induction,

u(t) =

∫ 1

0
Gn−1(t, s)(−v(s))ds

=

∫ 1

0

(
−
∫ 1

0
Gn−1(t, s)Gleft(s, r)ds

)
k(r)dr

=

∫ 1

0
Gn(t, s)k(s)ds.

Therefore,

u(t) =

∫ 1

0
Gn(t, s)k(s)ds,

where

Gn(t, s) = −
∫ 1

0
Gn−1(t, r)Gleft(r, s)dr.

So, the unique solution to

Dα+2n
0+

u(t) + k(t) = 0, 0 < t < 1,

satisfying boundary conditions (2) is given by

u(t) =

∫ 1

0
Gn(t, s)k(s)ds.

4. Green’s function properties

We now discuss properties for Gn(t, s) that are inherited from G0(t, s) and
Gleft(t, s). The results of the first lemma regarding Gleft(t, s) are easily verifiable.
Lemma 1. For (t, s) ∈ [0, 1]× [0, 1], Gleft(t, s) ∈ C(1) and Gleft(t, s) ≥ 0.

The following lemma regarding G0(t, s) is Lemma 3.1 proved in [2].
Lemma 2.
1) For (t, s) ∈ [0, 1]× [0, 1), G0(t, s) ∈ C(1).

2) For (t, s) ∈ (0, 1)× (0, 1), G0(t, s) > 0 and
∂

∂t
G0(t, s) > 0.

3) For (t, s) ∈ [0, 1]× [0, 1), tα−1G0(1, s) ≤ G0(t, s) ≤ G0(1, s).
Finally, we prove inherited properties for Gn(t, s) from Lemma 2.

Lemma 3.
1) For (t, s) ∈ [0, 1]× [0, 1), Gn(t, s) ∈ C(1).

2) For (t, s) ∈ (0, 1)× (0, 1), (−1)nGn(t, s) > 0 and (−1)n
∂

∂t
Gn(t, s) > 0.

3) For (t, s) ∈ [0, 1]× [0, 1),

(−1)ntα−1Gn(1, s) ≤ (−1)nGn(t, s) ≤ (−1)nGn(1, s).

Proof. We proceed inductively for each part.
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For 1) with (t, s) ∈ [0, 1]× [0, 1), we begin with the base case k = 1:

G1(t, s) = −
∫ 1

0
G0(t, r)Gleft(r, s)ds.

By Lemmas 1 and 2, G1(t, s) ∈ C(1).
Assume that k = n− 1 is true. Then, from Equation (3),

Gn(t, s) = −
∫ 1

0
Gn−1(t, r)Gleft(r, s)ds.

By induction and Lemma 1 1), Gn(t, s) ∈ C(1).
For 2) with (t, s) ∈ (0, 1) × (0, 1) and using Lemmas 1 and 2 2), we begin with

the base case k = 1:

(−1)1G1(t, s) = −
(
−
∫ 1

0
G0(t, r)Gleft(r, s)dr

)
> 0

and

(−1)1
∂

∂t
G1(t, s) = −

(
−
∫ 1

0

∂

∂t
G0(t, r)Gleft(r, s)dr

)
> 0.

Assume that k = n − 1 is true. Then, from Equation (3) and by induction and
Lemma 1,

(−1)nGn(t, s) = (−1)n
(
−
∫ 1

0
Gn−1(t, r)Gleft(r, s)dr

)
= (−1)2

(∫ 1

0
(−1)n−1Gn−1(t, r)Gleft(r, s)dr

)
> 0,

and

(−1)n
∂

∂t
Gn(t, s) = (−1)n

(
−
∫ 1

0

∂

∂t
Gn−1(t, r)Gleft(r, s)dr

)
= (−1)2

(∫ 1

0
(−1)n−1 ∂

∂t
Gn−1(t, r)Gleft(r, s)dr

)
> 0.

For 3) with (t, s) ∈ [0, 1]× [0, 1) and using Lemma 2 3), we begin with the base
case k = 1:

(−1)1tα−1G1(1, s) = −tα−1

(
−
∫ 1

0
G0(1, r)Gleft(r, s)dr

)
= −

(∫ 1

0
−tα−1G0(1, r)Gleft(r, s)dr

)
≤ −

(∫ 1

0
−G0(t, r)Gleft(r, s)dr

)
= −

(
−
∫ 1

0
G0(t, r)Gleft(r, s)dr

)
7
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= (−1)1G1(t, s),

and

(−1)1G1(t, s) = −
(
−
∫ 1

0
G0(t, r)Gleft(r, s)dr

)
=

∫ 1

0
G0(t, r)Gleft(r, s)dr

≤
∫ 1

0
G0(1, r)Gleft(r, s)dr

= −
(
−
∫ 1

0
G0(1, r)Gleft(r, s)dr

)
= (−1)1G1(1, s).

Assume that k = n− 1 is true. Then, from Equation (3),

(−1)ntα−1Gn(1, s) = (−1)ntα−1

(
−
∫ 1

0
Gn−1(1, r)Gleft(r, s)dr

)
= (−1)2

(∫ 1

0
(−1)n−1tα−1Gn−1(1, r)Gleft(r, s)dr

)
≤ (−1)2

(∫ 1

0
(−1)n−1Gn−1(t, r)Gleft(r, s)dr

)
= (−1)n

(
−
∫ 1

0
Gn−1(t, r)Gleft(r, s)dr

)
= (−1)nGn(t, s),

and

(−1)nGn(t, s) = (−1)n
(
−
∫ 1

0
Gn−1(t, r)Gleft(r, s)dr

)
= (−1)2

(∫ 1

0
(−1)n−1Gn−1(t, r)Gleft(r, s)dr

)
≤ (−1)2

(∫ 1

0
(−1)n−1Gn−1(1, r)Gleft(r, s)dr

)
= (−1)n

(
−
∫ 1

0
Gn−1(1, r)Gleft(r, s)dr

)
= (−1)nGn(1, s).

5. Existence of solutions

With the Green’s function established and necessary properties proved, we now
turn our attention to the existence of positive solutions to Equations (1) and (2) based
upon the parameter λ using Krasnosel’skii Fixed Point Theorem.

Define the constants

AGn =

∫ 1

0
(−1)nsα−1Gn(1, s)g(s)ds, BGn =

∫ 1

0
(−1)nGn(1, s)g(s)ds,

8
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F0 = lim sup
u→0+

f(u)

u
, f0 = lim inf

u→0+

f(u)

u
,

F∞ = lim sup
u→∞

f(u)

u
, f∞ = lim inf

u→∞

f(u)

u
.

Let B = C[0, 1] be a Banach space with norm

∥u∥ = max
t∈[0,1]

|u(t)|.

Define the cone

P = {u ∈ B : u(0) = 0, u(t) is nondecreasing, and

tα−1u(1) ≤ u(t) ≤ u(1) on [0, 1]
}
.

The inequality condition P is an inherited result from Gn(t, s) in Lemma 3.
Define the operator T : P → B by

Tu(t) = (−1)nλ

∫ 1

0
Gn(t, s)g(s)f(u(s))ds.

Lemma 4. The operator T : P → P is completely continuous.

Proof. Let u ∈ P . Then, by definition,

Tu(0) = (−1)nλ

∫ 1

0
Gn(0, s)g(s)f(u(s))ds = 0.

Also, for t ∈ (0, 1) and by Lemma 3 2),

∂

∂t
[Tu(t)] = (−1)nλ

∫ 1

0

∂

∂t
Gn(t, s)g(s)f(u(s))ds > 0,

which implies that Tu(t) is nondecreasing.
Next, for t ∈ [0, 1] and by Lemma 3,

tα−1Tu(1) = tα−1(−1)nλ

∫ 1

0
Gn(1, s)g(s)f(u(s))ds

≤ (−1)nλ

∫ 1

0
Gn(t, s)g(s)f(u(s))ds

= Tu(t),

and

Tu(t) = (−1)nλ

∫ 1

0
Gn(t, s)g(s)f(u(s))ds

≤ (−1)nλ

∫ 1

0
Gn(1, s)g(s)f(u(s))ds

= Tu(1).

Therefore, Tu ∈ P , and by the Arzela-Ascoli Theorem, T is completely
continuous.

9
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Theorem 2. If
1

AGnf∞
< λ <

1

BGnF0
,

then (1), (2) has at least one positive solution.
Proof. Since F0λBGn < 1, there exists an ϵ > 0 such that

(F0 + ϵ)λBGn ≤ 1.

Also since

F0 = lim sup
u→0+

f(u)

u
,

there exists an H1 > 0 such that

f(u) ≤ (F0 + ϵ)u for u ∈ (0,H1].

Define Ω1 = {u ∈ B : ∥u∥ < H1}. If u ∈ P ∩ ∂Ω1, then ∥u∥ = H1, and

|(Tu)(1)| = (−1)nλ

∫ 1

0
Gn(1, s)g(s)f(u(s))ds

≤ (−1)nλ

∫ 1

0
Gn(1, s)g(s)(F0 + ϵ)u(s)ds

≤ (F0 + ϵ)u(1)λ

∫ 1

0
(−1)nGn(1, s)g(s)ds

≤ (F0 + ϵ)∥u∥λBGn

≤ ∥u∥.

Since Tu ∈ P , ∥Tu∥ ≤ ∥u∥ for u ∈ P ∩ ∂Ω1.
Next, since f∞λ >

1

AGn

, there exists a c ∈ (0, 1) and an ϵ > 0 such that

(f∞ − ϵ)λ >

(
(−1)n

∫ 1

c
sα−1Gn(1, s)g(s)ds

)−1

.

Since

f∞ = lim inf
u→∞

f(u)

u
,

there exists an H3 > 0 such that

f(u) ≥ (f∞ − ϵ)u for u ∈ [H3,∞).

Define

H2 = max
{

H3

cα−1
, 2H1

}
,

and define Ω2 = {u ∈ B : ∥u∥ < H2}.

10
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Let u ∈ P ∩ ∂Ω2. Then, ∥u∥ = H2. Notice for t ∈ [c, 1],

u(t) ≥ tα−1u(1) ≥ cα−1H2 ≥ cα−1 H3

cα−1
= H3.

Therefore,

|(Tu)(1)| ≥ (−1)nλ

∫ 1

c
Gn(1, s)g(s)f(u(s))ds

≥ λ

∫ 1

c
(−1)nGn(1, s)g(s)(f∞ − ϵ)u(s)ds

≥ λ(f∞ − ϵ)u(1)(−1)n
∫ 1

c
sα−1Gn(1, s)g(s)ds

≥ ∥u∥.

Hence, ∥Tu∥ ≥ ∥u∥ for u ∈ P ∩ ∂Ω2. Notice sinceH1 < H2 we have Ω1 ⊂ Ω2.
Thus, by Theorem 1 1), T has a fixed point u ∈ P . By the definition of T , this fixed
point is a positive solution of Equations (1) and (2).
Theorem 3. If

1

AGnf0
< λ <

1

BGnF∞
,

then (1), (2) has at least one positive solution.
Proof. Since f0λAGn > 1, there exists an ϵ > 0 such that

(f0 − ϵ)λAGn ≥ 1.

Then, since

f0 = lim inf
u→0+

f(u)

u
,

there exists an H1 > 0 such that

f(u) ≥ (f0 − ϵ)u, t ∈ (0,H1].

DefineΩ1 = {u ∈ B : ∥u∥ < H1}. If u ∈ P ∩∂Ω1, then u(t) ≤ H1 for t ∈ [0, 1].
So,

|(Tu)(1)| = (−1)nλ

∫ 1

0
Gn(1, s)g(s)f(u(s))ds

≥ (−1)nλ

∫ 1

0
Gn(1, s)g(s)(f0 − ϵ)u(s)ds

≥ λ(f0 − ϵ)u(1)

∫ 1

0
(−1)nsα−1Gn(1, s)g(s)ds

≥ λ(f0 − ϵ)∥u∥AGn

≥ ∥u∥.

Thus, ∥Tu∥ ≥ ∥u∥ for u ∈ P ∩ ∂Ω1.

11
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Next, since F∞BGnλ < 1, there exists an ϵ ∈ (0, 1) such that

((F∞ + ϵ)BGn + ϵ)λ ≤ 1.

Since

F∞ = lim sup
u→∞

f(u)

u
,

there exists an H3 > 0 such that

f(u) ≤ (F∞ + ϵ)u, u ∈ [H3,∞).

Define

M = max
u∈[0,H3]

f(u).

Now, there exists a k ∈ (0, 1) with

(−1)n
∫ k

0
Gn(1, s)g(s)ds ≤

ϵ

M
.

Let

H2 = max
{
2H1,

H3

kα−1
, 1

}
,

and define Ω2 = {u ∈ B : ∥u∥ < H2}. Let u ∈ P ∩ ∂Ω2. Then, ∥u∥ = H2 and so,

u(1) = H2 ≥
H3

kα−1
> H3.

Now, u(0) = 0. So, by the Intermediate Value Theorem, there exists a γ ∈ (0, 1)

with u(γ) = H3. But, for t ∈ [k, 1], we have

u(t) ≥ tα−1u(1) = tα−1H2 ≥ kα−1 H3

kα−1
= H3.

So, γ ∈ (0, k]. Moreover, since u(t) is nondecreasing, this implies

0 ≤ u(t) ≤ H3, t ∈ [0, γ),

and
u(t) ≥ H3, t ∈ (γ, 1].

Therefore,

|(Tu)(1)| = (−1)nλ

∫ 1

0
Gn(1, s)g(s)f(u(s))ds

= λ

(
(−1)n

∫ γ

0
Gn(1, s)g(s)f(u(s))ds + (−1)n

∫ 1

γ
Gn(1, s)g(s)f(u(s))ds

)
≤ λ

(
M

∫ γ

0
(−1)nGn(1, s)g(s)ds + (−1)n

∫ 1

γ
Gn(1, s)g(s)(F∞ + ϵ)u(s)ds

)

12
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≤ λ

(
M

ϵ

M
+ (F∞ + ϵ)u(1)

∫ 1

γ
(−1)nGn(1, s)g(s)ds

)
≤ λ(ϵ+ (F∞ + ϵ)∥u∥BGn)

≤ λ(ϵ∥u∥+ (F∞ + ϵ)∥u∥BGn)

= λ∥u∥(ϵ+ (F∞ + ϵ)BGn)

≤ ∥u∥

Thus, ∥Tu∥ ≤ ∥u∥ for u ∈ P ∩ ∂Ω2. Notice that since H1 < H2 we have
Ω1 ⊂ Ω2. Thus, by Theorem 1 2), T has a fixed point u ∈ P . By the definition of T ,
this fixed point is a positive solution of Equations (1) and (2).
Remark 1. Since our interval is [0, 1], it is clear that AGn < BGn . Thus, the size
differential between f∞ andF0 for Theorem 2 and f0 andF∞ for Theorem 3. To further
expand, for Theorem 2, F0 < AGnf∞/BGn to ensure the existence of at least one
positive solution. Since AGn and BGn are independent of f , this is easily manageable.

6. Nonexistence results

Next, we provide nonexistence of positive solution results based on the size of the
parameter λ. First, we need the following lemma.
Lemma 5. Suppose Dα+2n

0+
u ∈ C[0, 1]. If (−1)n(−Dα+2n

0+
u(t)) ≥ 0 for all t ∈ [0, 1]

and u(t) satisfies (2), then
1) u′(t) ≥ 0, 0 ≤ t ≤ 1, and

2) tα−1u(1) ≤ u(t) ≤ u(1), 0 ≤ t ≤ 1.

Proof. Let 0 ≤ t ≤ 1.
For 1), by Lemma 3 2),

u′(t) =

∫ 1

0

∂

∂t
Gn(t, s)(−Dα+2n

0+
u(s))ds

=

∫ 1

0
(−1)n

∂

∂t
Gn(t, s)(−1)n(−Dα+2n

0+
u(s))ds

> 0.

For 2), by Lemma 3 3),

tα−1u(1) = tα−1

∫ 1

0
Gn(1, s)(−Dα+2n

0+
u(s))ds

=

∫ 1

0
(−1)ntα−1Gn(1, s)(−1)n(−Dα+2n

0+
u(s))ds

≤
∫ 1

0
(−1)nGn(t, s)(−1)n(−Dα+2n

0+
u(s))ds

=

∫ 1

0
Gn(t, s)(−Dα+2n

0+
u(s))ds

= u(t),

13
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and

u(t) =

∫ 1

0
Gn(t, s)(−Dα+2n

0+
u(s))ds

=

∫ 1

0
(−1)nGn(t, s)(−1)n(−Dα+2n

0+
u(s))ds

≤
∫ 1

0
(−1)nGn(1, s)(−1)n(−Dα+2n

0+
u(s))ds

=

∫ 1

0
Gn(1, s)(−Dα+2n

0+
u(s))ds

= u(1).

Theorem 4. If

λ <
u

BGnf(u)
,

for all u ∈ (0,∞), then no positive solution exists to Equations (1) and (2).
Proof. For contradiction, suppose that u(t) is a positive solution to Equations (1) and
(2). Then, (−1)n(−Dα+2n

0+
u(t)) = λg(t)f(u(t)) ≥ 0. So by Lemma 5,

u(1) = (−1)nλ

∫ 1

0
Gn(1, s)g(s)f(u(s))ds

< (−1)n(BGn)
−1

∫ 1

0
Gn(1, s)g(s)u(s)ds

≤ u(1)(BGn)
−1

∫ 1

0
(−1)nGn(1, s)g(s)ds

= u(1),

a contradiction.
Theorem 5. If

λ >
u

AGnf(u)

for all u ∈ (0,∞), then no positive solution exists to Equations (1) and (2).
Proof. For contradiction, suppose that u(t) is a positive solution to Equations (1) and
(2). Then, (−1)n(−Dα+2n

0+
u(t)) = λg(t)f(u(t)) ≥ 0. So by Lemma 5,

u(1) = (−1)nλ

∫ 1

0
Gn(1, s)g(s)f(u(s))ds

> (−1)n(AGn)
−1

∫ 1

0
Gn(1, s)g(s)u(s)ds

≥ u(1)(AGn)
−1

∫ 1

0
(−1)nsα−1Gn(1, s)g(s)ds

= u(1),

a contradiction.

14
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7. Examples

Finally, we discuss examples to demonstrate a way to use these theorems and
ensure positive solutions exist for fractional boundary value problems with meaningful
λ values.

Let n = 2, g(t) = t, and f(u) = u(10u+1)/(u+1). We note that g and f satisfy
their respective conditions. We see that f(u)/u = (10u+ 1)/(u+ 1) and find

F∞ = f∞ = 10 and F0 = f0 = 1.

The fractional Green’s function with α and β parameters is

G0(1, s;α, β) =
(1− s)α−1−β − (1− s)α−1

Γ(2.5)
.

Additionally, we have in terms of α and β

AG2(α, β) =

∫ 1

0

∫ 1

0

∫ 1

0
sα−1G0(1, r2;α, β)Gleft(r2, r1)Gleft(r1, s)sdr2dr1ds,

and

BG2(α, β) =

∫ 1

0

∫ 1

0

∫ 1

0
G0(1, r2;α, β)Gleft(r2, r1)Gleft(r1, s)sdr2dr1ds.

A closed form for these constants in terms of the parameters α and β would be
difficult to find. Instead, we evaluate sample values for these in our examples.
Example 1. Set m = 3, α = 2.5, and β = 1.5 so that AG2(2.5, 1.5) ≈ 0.047458 and
BG2(2.5, 1.5) ≈ 0.087190. We have

1

AG2f∞
≈ 1

0.047458 · 10
≈ 2.107,

and
1

BG2F0
≈ 1

0.087190 · 1
≈ 11.469.

Additionally, we calculate

inf
u∈(0,∞)

u

BG2f(u)
≈ 1

0.087190
· 1

10
≈ 1.147,

and

sup
u∈(0,∞)

u

AG2f(u)
=

1

0.047458
· 1 ≈ 21.071.

The fractional boundary value problem is

D6.5
0+u(t) + λt

u(10u+ 1)

u+ 1
= 0, 0 < t < 1,

15
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subject to

u(0) = u′(0) = 0, D1.5
0+ (1) = 0,

D3.5
0+ (0) = D2.5

0+ (1) = 0, D5.5
0+ (0) = D4.5

0+ (1) = 0.

Applying Theorem 2, we find that a positive solution exists if 2.107 < λ < 11.469.
Applying Theorems 4 and 5, we find that a positive solution does not exist if 0 < λ <

1.147 or λ > 21.071.
Example 2. Set m = 4, α = π, and β = e so that AG2(π, e) ≈ 0.076124 and
BG2(π, e) ≈ 0.165625. We have

1

AG2f∞
≈ 1

0.076124 · 10
≈ 1.314,

and
1

BG2F0
≈ 1

0.165625 · 1
≈ 6.038.

Additionally, we calculate

inf
u∈(0,∞)

u

BG2f(u)
≈ 1

0.165625
· 1

10
≈ 0.604,

and

sup
u∈(0,∞)

u

AG2f(u)
=

1

0.076124
· 1 ≈ 13.136.

The fractional boundary value problem is

Dπ+4
0+

u(t) + λt
u(10u+ 1)

u+ 1
= 0, 0 < t < 1,

subject to

u(0) = u′(0) = u′′(0) = 0, De
0+(1) = 0,

Dπ+1
0+

(0) = Dπ
0+(1) = 0, Dπ+3

0+
(0) = Dπ+2

0+
(1) = 0.

Applying Theorem 2, we find that a positive solution exists if 1.314 < λ < 6.038.
Applying Theorems 4 and 5, we find that a positive solution does not exist if 0 < λ <

0.604 or λ > 13.136.

Example 3. Set m = 10, α = 9.75, and β = 3.25 so that AG2(9.75, 3.25) ≈
9.794191061019805× 10−9 and BG2(9.75, 3.25) ≈ 6.010879852040359× 10−8. We
have

1

AG2f∞
≈ 1

9.794191061019805× 10−9 · 10
≈ 10, 210, 134,

and
1

BG2F0
≈ 1

6.010879852040359× 10−8 · 1
≈ 16, 636, 500.

16



Mathematics and Systems Science 2025, 3(2), 3577.

Additionally, we calculate

inf
u∈(0,∞)

u

BG2f(u)
≈ 1

6.010879852040359× 10−8
· 1

10
≈ 1, 663, 650,

and

sup
u∈(0,∞)

u

AG2f(u)
=

1

9.794191061019805× 10−9
· 1 ≈ 102, 101, 337.

The fractional boundary value problem is

D13.75
0+ u(t) + λt

u(10u+ 1)

u+ 1
= 0, 0 < t < 1,

subject to

u(i)(0) = 0, 0 ≤ i ≤ 8, D3.25
0+ (1) = 0,

D10.75
0+ (0) = D9.75

0+ (1) = 0, D12.75
0+ (0) = D11.75

0+ (1) = 0.

Applying Theorem 2, we find that a positive solution exists if 10, 210, 134 < λ <

16, 636, 500. Applying Theorems 4 and 5, we find that a positive solution does not exist
if 0 < λ < 1, 663, 650 or λ > 102, 101, 337.
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