References
Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics. 1982; 48(3): 387–411. doi: 10.1016/0021-9991(82)90058-4
Sengupta S, Sengupta TK, Puttam JK, et al. Global spectral analysis for convection-diffusion-reaction equation in one and two-dimensions: Effects of numerical anti-diffusion and dispersion. Journal of Computational Physics. 2020; 408. doi: 10.1016/j.jcp.2020.109310
Sagaut P, Suman VK, Sundaram P, et al. Global spectral analysis: Review of numerical methods. Computers and Fluids. 2023; 261. doi: 10.1016/j.compfluid.2023.105915
Sengupta TK. High Accuracy Computing Methods: Fluid Flows and Wave Phenomena. Cambridge University Press; 2013.
Sengupta S, Sreejith NA, Mohanamuraly P, et al. Global spectral analysis of the Lax-Wendroff central difference scheme applied to convection-diffusion equation. Computers and Fluids. 2022; 242. doi: 10.1016/j.compfluid.2022.105508
Sengupta TK, Lakshmanan V, Vijay VVSN. A new combined stable and dispersion relation preserving compact scheme for non-periodic problems. Journal of Computational Physics. 2009; 228(8). doi: 10.1016/j.jcp.2009.01.003
Ozbenli E, Vedula P. Construction of invariant compact finite difference schemes. Physical Review E. 2020; 101. doi: 10.1103/PhysRevE.101.023303
Sengupta TK, Ganerwal G, Dipankar A. High accuracy compact schemes and Gibbs’ phenomenon. Journal of Scientific Computing. 2004; 21(3). doi: 10.1007/s10915-004-1317-2
Auteri F, Quartapelle L, Vigevano L. Accurate ω-ψ spectral solution of the singular driven cavity problem. Journal of Computational Physics. 2002; 180(2): 597–615. doi: 10.1006/jcph.2002.7108
Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow. Computers and Fluids. 1998; 27(4): 421–433. doi: 10.1016/S0045-7930(98)00002-4
Suman VK, Viknesh SS, Tekriwal MK, et al. Grid sensitivity and role of error in computing a lid-driven cavity problem. Physical Review E. 2019; 99(1). doi: 10.1103/PhysRevE.99.013305
Burggraf OR. Analytical and numerical studies of the structure of steady separated flows. Journal of Fluid Mechanics. 1966; 24(1): 113–151. doi: 10.1017/S0022112066000545
Schreiber R, Keller HB. Driven cavity flows by efficient numerical techniques. Journal of Computational Physics. 1983; 49(2): 310–333. doi: 10.1016/0021-9991(83)90129-8
Lestandi L, Bhaumik S, Avatar GRKC, et al. Multiple Hopf bifurcations and flow dynamics inside a 2D singular lid driven cavity. Computers and Fluids. 2018; 166: 86–103. doi: 10.1016/j.compfluid.2018.01.038
Sengupta TK, Sundaram P, Suman VK, et al. A high accuracy preserving parallel algorithm for compact schemes for DNS. ACM Transactions on Parallel Computing. 2020; 7(4): 1–32. doi: 10.1145/3418073
Sundaram P, Sengupta A, Sengupta TK. A non-overlapping high accuracy parallel subdomain closure for compact scheme: Onset of Rayleigh-Taylor instability by ultrasonic waves. Journal of Computational Physics. 2022; 470. doi: 10.1016/j.jcp.2022.111593
Ranade R, Hill C, Pathak J. Discretization Net: A machine-learning based solver for Navier-Stokes equations using finite volume discretization. Computer Methods in Applied Mechanics and Engineering. 2021; 378: 113722. doi: 10.1016/j.cma.2021.113722
Sahin M, Owens RG. A novel fully implicit finite volume method applied to the lid-driven cavity problem—Part I: High Reynolds number flow calculations. International Journal for Numerical Methods in Fluids. 2003; 42(1): 57–77. doi: 10.1002/fld.442
Bruneau CH, Saad M. The 2D lid-driven cavity problem revisited. Computers and Fluids. 2006; 35(3): 326–348. doi: 10.1016/j.compfluid.2004.12.004
Beckers M, van Heijst GJF. The observation of a triangular vortex in a rotating fluid. Fluid Dynamics Research. 1998; 22(5). doi: 10.1016/S0169-5983(97)00039-7
Carnevale GF, Kloosterziel RC. Emergence and evolution of triangular vortices. Journal of Fluid Mechanics. 1994; 259: 305–331. doi: 10.1017/S0022112094000157
Jansson TRN, Haspang MP, Jensen KH, et al. Polygons on a rotating fluid surface. Physical Review Letters. 2006; 96(17). doi: 10.1103/PhysRevLett.96.174502
van der Vorst HA. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing. 1992; 13(2). doi: 10.1137/0913035
Landau LD, Lifshitz EM. Fluid Mechanics, 2nd ed. Elsevier; 1987.
Brunton SL, Noack BR, Komoutsakos P. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics. 2020; 52: 477–508. doi: 10.1146/annurev-fluid-010719-060214
Jiang Q, Zhu L, Shu C, et al. Multilayer perceptron neural network activated by adaptive Gaussian radial basis function and its application to predict lid-driven cavity flow. Acta Mechanica Sinica. 2021; 37(12): 1757–1772. doi: 10.1007/s10409-021-01144-5
Amalinadhi C, Palar PS, Stevenson R, et al. On physics-informed deep learning for solving Navier-Stokes equations. In: Proceedings of the AIAA SCITECH 2022 Forum; 3–7 January 2022; San Diego, CA, USA.
McDevitt C, Fowler E, Roy S. Physics-constrained deep learning of incompressible cavity flow. In: Proceedings of the AIAA SCITECH 2024 Forum; 8–12 January 2024; Orlando, FL, USA.
Sengupta TK. Transition to Turbulence: A Dynamical System Approach to Receptivity. Cambridge University Press; UK, 2021
Sengupta TK, Vijay VVSN, Singh N. Universal instability modes in internal and external flows. Computers and Fluids. 2011; 40(1): 221–235. doi: 10.1016/j.compfluid.2010.09.006
Eckhaus W. Studies in Non-Linear Stability Theory. In: Springer Tracts in Natural Philosophy. Springer; 1965.
Drazin PG, Reid WH. Hydrodynamic Stability. Cambridge University Press; 2004.
Sengupta TK. Instability of Flows and Transition to Turbulence. CRC Press; 2012
Chu PC, Fan C. A three-point combined compact difference scheme. Journal of Computational Physics. 1998; 140(2): 370–399. doi: 10.1006/jcph.1998.5899
Sengupta TK, Dipankar A, Sagaut P. Error dynamics: Beyond von Neumann analysis. Journal of Computational Physics. 2007; 226(2): 1211–1218. doi: 10.1016/j.jcp.2007.06.001
Tan R, Ooi A, Sandberg RD. Two-dimensional analysis of hybrid spectral/finite difference schemes for linearized compressible Navier-Stokes equations. Journal of Scientific Computing. 2021; 87(42). doi: 10.1007/s10915-021-01442-x
Cheviakov AF, Dorodnitsyn V, Kapstov EI. Invariant conservation law-preserving discretizations of linear and nonlinear wave equations. Journal of Mathematical Physics, vol. 61, 081504, 2020, doi: 10.1063/5.0004372
Coppola G, Capuano F, de Luca L. Discrete energy-conservation properties in the numerical simulation of the Navier-Stokes equations. Applied Mechanics Review. 2019; 71(1). doi: 10.1115/1.4042820
Coppola G, Capuano F, Pirozzoli S, et al. Numerically stable formulations of convective terms for turbulent compressible flows. Journal of Computational Physics. 2019; 382: 86–104. doi: 10.1016/j.jcp.2019.01.007
Sjögreen B, Yee HC, Kotov D. Skew-symmetric splitting and stability of high order central schemes. In: Proceedings of the 11th International Conference on Numerical Modeling of Space Plasma Flows: ASTRONUM-2016; 6–10 June 2016; Monterey, CA, USA.
Sengupta TK, Singh N, Suman VK. Dynamical system approach to instability of flow past a circular cylinder. Journal of Fluid Mechanics. 2010; 656: 82–115. doi: 10.1017/S0022112010001035
Chomaz JM. Global instabilities in spatially developing flows: Non-normality and nonlinearity. Annual Review of Fluid Mechanics. 2005; 37: 357–392. doi: 10.1146/annurev.fluid.37.061903.175810
Sengupta TK, Lestandi L, Haider SI, et al. Reduced order model of flows by time-scaling interpolation of DNS data. Advanced Modeling and Simulation in Engineering Sciences. 2018; 5(26). doi: 10.1186/s40323-018-0119-2
Drakoulas GI, Goritsas TV, Bourantas GC, et al. Fast SVD-ML-ROM: A reduced order modelling framework based on machine learning for real time application. Computer Methods in Applied Mechanics and Engineering. 2023; 414: 116155. doi: 10.1016/j.cma.2023.116155
Lam R, Sanchez-Gonzalez A, Willson M, et al., Learning skillful medium-range global weather forecasting. Science. 2023; 382(6677): 1416–1421. doi: 10.1126/science.adi23
Kochkov D, Smith JA, Alieva A, et al., Machine learning-accelerated computational fluid dynamics. PNAS. 2021; 118(21). doi: 10.1073/pnas.2101784118
Salim DM, Burkhart B, Sondak D. Extending a physics-informed machine-learning network for superresolution studies of Rayleigh-Benard convection. The Astrophysical Journal. 2024; 964(1). doi: 10.3847/1538-4357/ad1c55
Takhirov A, Trenchia C, Waters J. Second order efficient nonlinear filter stabilization for high Reynolds number flows. Numerical Methods for Partial Differential Equations. 2023; 39(1): 90–107. doi: 10.1002/num.22859
Bastian P, Altenbernd M, Dreier NA, et al. Exa-Dune-Flexible PDE solvers, numerical methods and applications. Software for Exascale Computing-SPPEXA 2016–2019. Springer; 2020. Volume 136.
Rogallo RS. Numerical experiments in homogeneous turbulence. Available online: https://ntrs.nasa.gov/api/citations/19810022965/downloads/19810022965.pdf (accessed on 20 November 2024).
Yeung PK, Donzis DA, Sreenivasan KR. Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers. Journal of Fluid Mechanics. 2012; 700: 5–15. doi: 10.1017/jfm.2012.5
Buaria D, Sreenivasan KR. Dissipation range of the energy spectrum in high Reynolds number turbulence. Physical Review of Fluids. 2020; 5(9). doi: 10.1103/PhysRevFluids.5.092601
Buaria D, Bodenschatz E, Pumir A. Vortex stretching and enstrophy production in high Reynolds number turbulence. Physical Review Fluids. 2020; 5(10). doi: 10.1103/PhysRevFluids.5.104602
Buaria D, Pumir A, Bodenschatz E. Self attenuation of extreme events in Navier-Stokes turbulence. Nature Communications. 2020; 11: 5852. doi: 10.1038/s41467-020-19530-1
Orszag SA. Numerical methods for the simulation of turbulence. Physics of Fluids. 1969; 12(12). doi: 10.1063/1.1692445
Gottlieb D, Orszag SA. Numerical Analysis of Spectral Methods: Theory and Applications. SIAM; 1977.
Ishihara T, Gotoh T, Kaneda Y. Study of high-Reynolds number isotropic turbulence by DNS. Annual Review of Fluid Mechanics. 2009; 41: 165–180. doi: 10.1146/annurev.fluid.010908.165203
Ishihara T, Morishita K, Yokokawa M, et al. Energy spectrum in high resolution direct numerical simulation of turbulence. Physical Review Fluids. 2016; 1(8). doi: 10.1103/PhysRevFluids.1.082403
Doering CR, Gibbon JD. Applied Analysis of the Navier-Stokes Equations. Cambridge University Press; 1995.
Kraichnan RH. Inertial range in two-dimensional turbulence. Physics of Fluids. 1967; 10(7): 1417–1423. doi: 10.1063/1.1762301
Batchelor GK. Computation of the energy spectrum in homogeneous two-dimensional turbulence. Physics of Fluids. 1969; 12(12): 233–239. doi: 10.1063/1.1692443
Brachet ME, Meneguzzi R, Politano H, et al. The dynamics of freely decaying two dimensional turbulence. Journal of Fluid Mechanics. 1988; 194: 333–349. doi: 10.1017/S0022112088003015
Sengupta TK, Sarkar A, Joshi B, et al. Direct simulation of vortex dynamics of multicellular Taylor-Green vortex by Pseudospectral method. European Journal of Mechanics/B Fluids. 2024; 108: 226–236. doi: 10.1016/j.euromechflu.2024.08.004
Pawar S, San O. Equation free surrogate modelling and geophysical flows at the intersection of machine learning and data assimilation. Journal of Advanced Modelling Earth System. 2022; 14(11). doi: 10.1029/2022MS003170
Quaini A, San O, Veneziani A, et al. Bridging large eddy simulation and reduced order modelling of convection dominated flows through spatial filtering: Reviews and perspectives. Fluids. 2024; 9(8): 178. doi: 10.3390/fluids9080178
Takhirov A, Trenchia C. Efficient nonlinear filter stabilization of the Leray-α model. Journal of Computational Physics. 2022; 471: 111668. doi: 10.1016/j.jcp.2022.111668
Chung WT, Jung KS, Chen JH, et al. BLASTNet: A call for community-involved big data in combustion machine learning. Applications in Energy and Combustion Science. 2022; 12: 100087. doi: 10.1016/j.jaecs.2022.100087
Lucor D, Agrawal A, Sergeant A. Simple computational strategies for more effective physics informed neural networks modeling of turbulent natural convection. Journal of Computational Physics. 2022; 456: 111022. doi: 10.1016/j.jcp.2022.111022
Sofos F, Drikakis D, Kokkinakis IW, et al. A deep learning super-resolution model for turbulent image upscaling and its application to shock wave-boundary layer interaction. Physics of Fluids. 2024; 36(2). doi: 10.1063/5.0190272
Zhou Y. Turbulence theories and statistical closure approaches. Physics Report. 2021; 935: 1–117. doi: 10.1016/j.physrep.2021.07.001
Zhou Y, Clark TT, Clark DS, et al. Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Physics of Plasmas. 2019; 26(8). doi: 10.1063/1.5088745
Zhou Y, Williams RJR, Ramaprabhu P, et al. Rayleigh-Taylor and Richtmeyer-Meshkov instabilities: A journey through peaks. Physica D: Nonlinear Phenomena. 2021; 423. doi: 10.1016/j.physd.2020.132832
Joshi B, Sengupta TK, Sundaram P, et al. Highly resolved Peta-scale DNS: Onset of Kelvin-Helmholtz Rayleigh-Taylor instability via pressure pulses. Computers and Fluids. 2024; 284: 106442. doi: 10.1016/j.compfluid.2024.106442
Zhou Y. Hydrodynamic Instabilities and Turbulence: Rayleigh-Taylor, Richtmeyer-Meshkov and Kelvin-Helmholtz Mixing. Cambridge University Press; 2024.
Zhou Y, Saddler JD, Hurricane OA. Instabilities and mixing in inertial confinement fusion. Annual Review of Fluid Mechanics. 2025; 57: 197–225. doi: 10.1146/annurev-fluid-022824-110008
Pereira FS, Grinstein FF, Israel D. Effect of numerical discretization schemes in shock driven turbulent mixing simulations. Computers and Fluids. 2020; 201: 104487. doi: 10.1016/j.compfluid.2020.104487
Sengupta TK, Sharma PK, Sengupta A, et al. Tracking disturbances in transitional and turbulent flows: Coherent structures. Physics of Fluids. 2029; 31(12): 124106. doi: 10.1063/1.5130918