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Abstract: This study aims to investigate the effects of implicit numerical excitation on the 

receptivity of flow inside a square lid-driven cavity (LDC) leading to bifurcation and instability 

for a fixed (257 × 257) grid with different temporal resolutions via the solution of the Navier-

Stokes equation. Computational results have been provided showing the flow dynamics of the 

LDC problem as explained with a time series at a representative point near the top corner of 

the cavity at (0.95, 0.95) for supercritical Reynolds numbers with respect to the bifurcation 

phenomenon by lowering the time step. As the accuracy of numerical methods plays a vital 

role in capturing the dynamics at different Reynolds numbers, this vortex-dominated flow is 

explained for bifurcation and instability. We propose this as a benchmark problem for the direct 

numerical simulation (DNS) and for machine learning (ML) of fluid flow that will lead to 

efficient ML algorithms and an understanding of flow receptivity, instability, and transition by 

DNS. 

Keywords: lid-driven cavity flow; direct numerical simulation; high-performance computing; 

bifurcation analysis; receptivity analysis; global spectral analysis; error dynamics; machine 

learning of flows 

1. Introduction 

Flow inside a lid-driven cavity (LDC) is considered a classical non-periodic 

problem among researchers in scientific computing because of its unique boundary 

conditions, which allow one to test the accuracy of the numerical method for solving 

the Navier-Stokes equation (NSE). It also aids in comprehending the nonlinear 

dynamics of vortex-driven unsteady flows, which will set a benchmark problem for 

quantifying direct numerical simulation (DNS) and testing machine learning purposes. 

As shown in the schematic of the problem in Figure 1, the top lid is subjected to a 

constant translational velocity (U) that provides the Reynolds numbers (Re = U𝜈/𝐿, 

where 𝜈 represents the kinematic viscosity, and L is the side of the square LDC). The 

flow inside the LDC becomes unsteady due to the growth of disturbances, as created 

by omnipresent numerical errors and other epistemic errors like aliasing errors. The 

unavoidable numerical errors due to round-off and dispersion errors make the flow 

inherently unsteady above a critical Reynolds number (Recr); precise knowledge of the 

same eluded us before. Numerous two-dimensional (2D) studies have been reported 

using the most accurate vorticity-stream function formulation of the incompressible 

NSE. A typical representative work using a coupled strongly implicit multigrid 

method to obtain the solutions for Re up to 10,000 with (257 × 257) and (129 × 129) 

grids has been reported in Ghia et al. [1]. However, a steady-state solution was 
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achieved for Re = 10,000, for which no reason was provided, and this discrepancy is 

explained here for the first time. This is related to the acquired knowledge by global 

spectral analysis (GSA) of numerical methods in Sengupta et al. [2], Sagaut et al. [3], 

Sengupta [4] and Sengupta et al. [5], which enabled to develop extremely high 

accuracy and dispersion relation preserving combined compact difference (CCD) 

schemes, as in Sengupta et al. [6] and in Ozbenli and Vedula [7]. A highly accurate 

new combined compact difference (NCCD) scheme was implemented to calculate the 

first and second derivatives simultaneously to improve the original CCD scheme. With 

the NCCD method, the usual sources of error due to discretization are minimized, 

while unsteadiness arises at higher Reynolds numbers due to aliasing error, Gibbs’ 

phenomenon (described in Sengupta et al. [8]), with the latter being due to the physical 

discontinuity of the velocity boundary condition at the ends of the top lid. In 

consequence, the corner points have zero vorticity, while adjacent points exhibit high 

wall vorticity. This discrete change between the corner and neighboring points results 

in Gibbs’ phenomenon at the top corners. This has been identified at the corners of the 

top lid in the pseudo-spectral computation of the NSE in Auteri et al. [9] and in Botella 

and Peyret [10]. The aliasing errors are distributed at all the points of the top lid, as 

explained in Suman et al. [11]. Steady flow in LDC analyzed and computed in Burgraff 

[12], however, displays unsteadiness at varying Re values, as described in Schreiber 

and Keller [13]. For higher Re, the LDC flow experiences solution bifurcation by 

various sources of numerical errors to display unsteadiness, as have been described in 

Lestandi et al. [14]. Schreiber and Keller [13] reported a solution for Re = 10,000 on 

a (180 × 180) grid, adapting a Newton-like method useful for nonlinear systems. 

High accuracy results presented for Re = 10,000 in Sengupta et al. [6] using a 

(257 × 257) grid indicated the creation of a transient polygonal vortex at the core with 

permanent gyrating satellite vortices around the core. These results were obtained 

using sequential computing. Solving such high-Re LDC flow accurately using parallel 

computing is not trivial. This was shown for the first time in Suman et al. [11], with 

results obtained using (1025 × 1025) and (2049 × 2049) grids by the non-overlapping 

high accuracy parallel (NOHAP) scheme reported in Sengupta et al. [15] and 

Sundaram et al. [16]. This special scheme was developed to remove any errors at the 

subdomain boundaries when overlapping parallel compact schemes were used. Earlier 

sequential computing methods have been used to obtain the first 𝑅𝑒𝑐𝑟, as reported by 

different numerical methods in Lestandi et al. [14]. It also demonstrated that for high 

Re, following the first Hopf bifurcation, the flow in the limit cycle suffers a secondary 

instability requiring a significantly longer computing time, which earlier studies on 

the topic did not practice. In the presented results, we report results obtained with very 

high accuracy HPC simulated over very long times.  

A machine-learning-based solver for NSE using finite volume discretization has 

been described in Ranade et al. [17]. In Sahin and Owens [18], the implicit finite 

volume method was used for this flow by removing the pressure term from the 

momentum equation and multiplying it with the unit normal vector to control the 

volume boundary and afterward integrating from that boundary. Using a second-order 

spectral projection method, the R𝑒𝑐𝑟 within an interval was pinpointed in the interval 

(8017.6, 8018.8) in Auteri et al. [9]. Sahin and Owens [18] reported the critical 

Reynolds number to be 8031.93. Bruneau and Saad [19] identified this range as 
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between 8000 and 8050, though they did not present any bifurcation diagram. Their 

analysis used a (1024 × 1024) grid with third- and fifth-order spatial discretization 

schemes. However, use of the three-time-level Gear method introduced an artificial 

mode, which impacted the overall accuracy of the results in Bruneau and Saad [19]. 

Regularizing the lid’s velocity at the ends can reduce the discontinuous velocity 

(eliminating Gibbs’ phenomenon), but it cannot eliminate aliasing error.  

A vorticity time series plot shown in Lestandi et al. [14], indicates initial temporal 

growth followed by nonlinear saturation. Multiple Hopf bifurcations with varying Re 

for both excited and unexcited cases were shown for (257 × 257) and (513 × 513) grids 

in this reference [14]. Parallel computing results for the finer grids with (1025 × 1025) 

and (2049 × 2049) points in Suman et al. [11], also showed a pentagonal vortex at the 

center, which eventually morphed into a triangular vortex. Experimental 

demonstration of polygonal vortices have been reported by Beckers and van Heijst 

[20], Carnevale and Kloosterziel [21] and Jansson et al. [22]. In the presented results 

by sequential and parallel computations of the governing vorticity transport equation, 

one observes such polygonal vortices in the vorticity contours. To solve the stream 

function equation, the Bi-CGSTAB method of Van der Vorst [23] is employed.  

The effect of various errors due to aliasing and Gibbs’ phenomenon causing 

discontinuous jumps at corners for finer grids was explained in Suman et al. [11]. It 

was also observed that by regularizing corner singularities, the critical Reynolds 

number Recr1 could be extended in the range of (10,000–10,500). DNS reveals 

spatiotemporal disturbance growth and nonlinear saturation, distinguishing it from 

classical bifurcation studies that limit the analysis to temporal instability only, as in 

Landau and Lifshitz [24]. Effects of varying spatial resolution in the 2D LDC were 

investigated by explicitly exciting the flow at varying amplitudes and frequencies in 

Suman et al. [11].  

 
Figure 1. The schematic of the problem with sample point P is located at (0.95, 

0.95) in the computational domain for (257 × 257) grid points. 
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In the presented results here, the same NOHAP scheme developed in Sengupta 

et al. [15] and in Sundaram et al. [16] has been adopted with parallelization imposed 

in the x-direction only. The main emphasis here is to obtain the R𝑒𝑐𝑟  value as 

accurately as possible, i.e., dictated by GSA in Sagaut et al. [3], Sengupta [4] and 

Sengupta et al. [5] with the relative dominant roles of the Courant-Friedrichs-Lewy 

(CFL) and the diffusion numbers. It is essential to note that this internal flow is 

diffusion-dominated and not convection-dominated. One of the principal goals of the 

present research is to create a benchmark set of results that can be used in studies of 

artificial intelligence and machine learning in fluid mechanics, as in Brunton et al. 

[25], Jiang et al. [26], Amalmadhi et al. [27] and McDevitt et al. [28]. 

Unlike early simulations of LDC flows by sequential computing, high-

performance computing was carried out with (257 × 257), (513 × 513), and (1025 × 

1025) grid points in Suman et al. [11], using explicit excitation for parallel computing 

using NOHAP closure developed in Sengupta et al. [15] and Sundaram et al. [16]. 

Present research builds on this HPC approach to perform receptivity analysis, as given 

in Sengupta [29], by implicitly exciting the flow through initial excitation by varying 

temporal resolutions to show the importance of diffusion over convection for the LDC 

flow. This is a novel approach for this study to provide DNS results with extreme 

accuracy. Such high accuracy, high-performance calculation enables one to compute 

transitional and turbulent flows, capturing the underlying physics of the receptivity 

approach, and those results create the benchmark for DNS, reduced-order models, and 

databases for machine learning. 

The paper is formatted in the following manner: In Section 2, the governing 

equation and the numerical methods used are described briefly. In Section 3, the 

vorticity dynamics of the LDC flow are described for a representative supercritical Re 

= 8500. The multiple Hopf bifurcation is noted for flows at different Re in Section 4. 

In subsection 4.1, a brief description of GSA is provided using the convection-

diffusion equation. The onset of instability is described in section 5. The paper closes 

with a summary and conclusions. 

2. Governing equation and numerical method adapted 

A DNS for 2D square LDC flow is performed using the stream function-vorticity 

formulation of the NSE. The governing stream function equation and the vorticity 

transport equation are as given in the following: 

𝛻2𝜓 = −𝜔 (1) 

𝜕𝜔

𝜕𝑡
+ (�⃗� . 𝛻)𝜔 =

1

𝑅𝑒
𝛻2𝜔 (2) 

where 𝜔 is the nonzero component of vorticity normal to the flow for the proposed 2D 

square LDC problem. The velocity vector is defined as �⃗� = 𝛻 × �⃗⃗� , where �⃗⃗�  = 

[0,0,𝜓]. Non-dimensionalization of NSE was done using L and U as corresponding 

length and velocity scales, respectively. The following boundary conditions are 

imposed to solve Equations (1) and (2). The stream function 𝜓 is held constant on all 

four cavity walls, enforcing the no-slip condition. The wall vorticity 𝜔𝑏 is precisely 



Mathematics and Systems Science 2025, 3(1), 3108.  

5 

defined by 𝜔𝑏 = −
𝜕2𝜓

𝜕𝑛2 , where n is the wall-normal coordinate selected for each cavity 

wall. Using Taylor series expansion at the wall, 𝜔𝑏  is calculated with velocity 

boundary conditions specified along each segment. To solve the discretized form of 

Equation (1), the Bi-CGSTAB method of Van der Vorst [23], a fast and convergent 

solver for elliptic partial differential equations, is employed. The convection and 

diffusion terms in Equation (2) are discretized with the NCCD method in Sengupta et 

al. [6], enabling the simultaneous computation of both first and second-order 

derivatives. The stencil of the NCCD scheme for computing derivatives is given below 

in brief, with a single prime indicating a first derivative and a double prime indicating 

a second derivative. Further details on CCD and related compact schemes are available 

in Sengupta [4].  

𝑢1
′ =

1

2ℎ
[−3𝑢1 + 4𝑢2 − 𝑢3]  

𝑢1
′′ =

1

ℎ2
[𝑢1 − 2𝑢2 + 𝑢3] 

𝑢2
′ =

1

ℎ
[(

2𝛽

3
−

1

3
)𝑢1 − (

8𝛽

3
+

1

2
)𝑢2 + (4𝛽 + 1)𝑢3 − (

8𝛽

3
+

1

6
)𝑢4 +

2𝛽

3
𝑢5] 

𝑢2
′′ =

1

ℎ2
[𝑢1 − 2𝑢2 + 𝑢3] 

7

16
(𝑢𝑗+1

′ + 𝑢𝑗−1
′ ) + 𝑢𝑗

′ −
ℎ

16
(𝑢𝑗+1

′′ − 𝑢𝑗−1
′′ ) =

15

16ℎ
(𝑢𝑗+1 − 𝑢𝑗−1), 𝑗 = 3,⋅⋅⋅, 𝑁 − 2 

9

8ℎ
(𝑢𝑗+1

′ + 𝑢𝑗−1
′ ) −

1

8
(𝑢𝑗+1

′′ − 𝑢𝑗−1
′′ ) + 𝑢𝑗

′′ =
3

ℎ2 (𝑢𝑗+1 − 2𝑢𝑗 + 𝑢𝑗−1), 𝑗 = 3,⋅⋅⋅, 𝑁 − 2 

𝑢𝑁−1
′ =

−1

ℎ
[(

2𝛽

3
−

1

3
)𝑢𝑁 − (

8𝛽

3
+

1

2
)𝑢𝑁−1 + (4𝛽 + 1)𝑢𝑁−2 − (

8𝛽

3
+

1

6
)𝑢𝑁−3 +

2𝛽

3
𝑢𝑁−4] 

𝑢𝑁−1
′′ =

1

ℎ2
[𝑢𝑁 − 2𝑢𝑁−1 + 𝑢𝑁−2] 

𝑢𝑁
′ =

1

2ℎ
[3𝑢𝑁 − 4𝑢𝑁−1 + 𝑢𝑁−2] 

𝑢𝑁
′′ =

1

ℎ2
[𝑢𝑁 − 2𝑢𝑁−1 + 𝑢𝑁−2] 

𝛽 = −0.025 for 𝑗 = 2 and 𝛽 = 0.09 for 𝑗 = 𝑁 − 1 (3) 

The system of Equations (3) is solved using a block tridiagonal matrix algorithm 

(TDMA) to obtain the derivatives. These derivatives (in both directions for the two-

dimensional problems) are needed in solving both the stream function equation and 

the vorticity transport equation.  

To advance Equation (2) in time, a four-stage, fourth-order Runge-Kutta (R𝐾4) 

method is utilized, whose algorithm is given below. 

𝑢(1) = 𝑢(𝑛) +
𝛥𝑡

2
𝐿(𝑢(𝑛)) 
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𝑢(2) = 𝑢(𝑛) +
𝛥𝑡

2
𝐿(𝑢(1)) 

𝑢(3) = 𝑢(𝑛) + 𝛥𝑡𝐿(𝑢(2)) 

𝑢(𝑛+1) = 𝑢(𝑛) +
𝛥𝑡

6
[𝐿(𝑢(𝑛)) + 2𝐿(𝑢(1)) + 2𝐿(𝑢(2)) + 𝐿(𝑢(3)) (4) 

where the governing equation is expressed in the form 
𝜕𝑢

𝜕𝑡
= 𝐿(𝑢), and the superscripts 

denote the stages of the RK scheme. These simulations are highly sensitive to the 

numerical properties given by the GSA. 

Parallelizing the code using the Schwarz domain decomposition technique fails 

to reproduce the results from sequential computation despite many overlapping points 

being used at the subdomain boundaries, as explained in Sengupta et al. [15] and 

Sundaram et al. [16]. Here, a parallelization approach that circumvents the need for 

overlapping subdomains while preserving the accuracy of the sequential NCCD 

method is used. The parallel algorithm follows a strategy of preserving the accuracy 

of the compact scheme used in the interior by completely eliminating errors caused by 

subdomain closure. The parallelization process has been applied in two phases: in the 

first phase, the compact scheme, which is used in the interior, has been pre-conditioned 

to allocate the essential information for computing the first derivatives at an interior 

point. This information is subsequently used at the boundary stencils for the 

subdomain boundaries, with the details given in Sengupta et al. [15] and Sundaram et 

al. [16]. 

3. Flow dynamics of square LDC for Re = 8500 and 𝚫t = 5 × 10−5 

Computational results for vorticity inside the LDC for Re = 8500 have been 

shown in Figure 2 at the point P, whose coordinate is given as (0.95, 0.95), and the 

computational results are obtained with the time step of Δt = 5 × 10−5 and a uniform 

(257 × 257)-grid. From the vorticity time series shown in the middle, we can observe 

that the flow shows a massive transient initially that takes time to settle down to a 

steady state subsequently. It is observed that from non-dimensional time t = 400, where 

the flow is steady, one can see coherent circular vortices at the core. At the onset of 

instability, the amplitude of vorticity increases exponentially during the initial growth 

up to about t = 595, beyond which the core morphs into a triangular shape. At time t = 

650, the outer layer transforms into gyrating satellite vortices; at this instant, the core 

is perfectly transformed into a triangular shape. Such a triangular core shape has been 

reported earlier only in Sengupta et al. [6]. Thereafter, in the limit cycle oscillation 

region, i.e., when nonlinearity prevails with the growth of vorticity saturates, as noted 

at t = 850, we can observe the core vortex to start shrinking. Then, the flow is guided 

by six gyrating satellite vortices alternating in sign. Experimental evidences in Beckers 

and van Heijst [20], Carnevale and Kloosterzeil [21] and Jansson et al. [22], derived 

from dye visualization techniques in rotating flows, demonstrated the physical 

presence of triangular vortices. Capturing such a triangular vortex at the center of the 

LDC necessitates accurate spatial and temporal discretization. In computational 
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analyses, it is necessary that a highly accurate numerical method minimize different 

sources of errors and successfully capture the polygonal core vortices.  

However, any inaccuracies in modeling and/or adding spurious dissipation and 

dispersion hinder capturing such core vortices. One notes that complex interactions of 

vortices forming inside the LDC highlight the dynamics and nature of flow patterns 

within the cavity. 

 
Figure 2. Time series for Re = 8500 at the timestep Δt = 5 × 10−5 at the sample point 

P, along with vorticity contours plotted at different times. 

4. Multiple Hopf bifurcation analysis 

As observed from the vorticity time series in Figure 2 at P (0.95, 0.95), the flow 

undergoes temporal linear instability to begin with. Subsequently, at a later time, 

nonlinearity becomes significant, causing the growth to saturate and the amplitude to 

stabilize, forming a limit cycle while reaching a new equilibrium amplitude 𝐴𝑒, as 

illustrated in Figure 2. The Stuart-Landau-Eckhaus equation, as has been 

progressively developed in Landau and Lifshtiz [24], Drazin and Reid [30], Ekhaus 

[31] and Sengupta et al. [32], that effectively explains this phenomenon by expanding 

the eigenfunctions, as in Ekhaus [31], Sengupta et al. [32] using the Galerkin method 

for proper orthogonal decomposition (POD). The Stuart-Landau equation was 

formulated originally under the assumption of a single unstable modal growth in 
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Landau and Lifshitz [24]. In contrast, in the present case, it is observed that the flow 

inside the cavity exhibits distinct multimodal characteristics. To address this issue, 

Eckhaus proposed more general equations that accounted for nonlinear interactions 

between different combinations of modes, including self-interactions in Ekhaus [31] 

and Sengupta et al. [32]. 

Originally, Landau proposed a relationship between the equilibrium amplitude 

(𝐴𝑒) and Re as, 𝐴𝑒
2  ∝ (Re − R𝑒𝑐𝑟1) for flow attaining a limit cycle by considering a 

single mode only. Lestandi et al. [14] plotted 𝐴𝑒  versus Re curve, where Hopf 

bifurcation was reported to start between Re = 8600 and 8670 for a (257 × 257) grid 

size used with the NCCD scheme for a sequential code. Discontinuity was seen in the 

curve, indicating the presence of multiple Hopf bifurcations. Following these 

observations, studies were carried out in Suman et al. [11], showing the same 𝐴𝑒 

versus Re plot for grids with (257 × 257), (513 × 513), and (1025 × 1025) points, by 

using explicit excitation for parallel computing using NOHAP closure. The present 

research builds on previous ones and presents a receptivity analysis for the LDC flow. 

This is achieved by implicitly exciting the flow by different excitations associated with 

numerical sources of errors with varying temporal resolutions, unlike explicit 

excitation in Suman et al. [11]. The bifurcation diagram shown in Figure 3 for two 

time steps of Δt = 5 × 10−5 and Δt = 2 × 10−5 provides insight into how the flow 

behavior changes for different temporal resolutions that determine the level of 

numerical error to trigger the receptivity of the flow field. The red line indicates the 

higher time step that shows a slope discontinuity of the curve at Re = 8600 with a kink, 

which is clear evidence of multiple Hopf bifurcations present, as explained in 

Sengupta et al. [32]. 

 
Figure 3. Equilibrium amplitude (𝐴𝑒) as a function of Re is shown in the bifurcation 

diagram for the time steps of Δt = 5× 10−5 and Δt = 2 × 10−5. 
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For the chosen two time steps, simulations are performed for Reynolds numbers 

above and equal to 8000, for which terminal unsteady flows have been obtained. This 

is indicated by the vertical line for Re = 8000, above which the LDC flow is definitely 

unsteady. The hatched area to the left of this vertical line has been investigated, with 

cases having been computed extensively for long times without showing unsteadiness 

for these two time steps. Simulations at such lower Reynolds numbers can be 

performed for smaller time steps and for longer durations for exact estimation of 

critical Re. 

It has also been observed that for Re = 8000, one gets an unsteady solution for Δt 

= 5 × 10−5 at a significantly later time, while an unsteady solution is obtained for Δt = 

2 × 10−5 much earlier, as shown in Figure 4 with the help of the displayed time series. 

This type of flow receptivity has never been reported in the literature before. 

  
(a) (b) 

Figure 4. Time series for Re 8000 for time steps (a) Δt = 5 × 10−5 (shown till t = 9297); and (b) Δt = 2 × 10−5 (shown 

till t = 2148). 

Global spectral analysis for convection-diffusion equation 

To explain the physics of LDC flow governed by NSE for post-critical Reynolds 

number, the GSA is performed for the model 1D convection-diffusion equation that 

models the feature of the NSE solved here by using R𝐾4 for the time advancement 

strategy and the NCCD scheme used for spatial discretization. Such an analysis helps 

one to choose grid spacings, time steps, and other numerical parameters so that the 

simulation provides the high fidelity required for DNS and its application in machine 

learning. 

The 1D convection-diffusion equation can be represented as: 

𝜕𝑢

𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
= 𝛼

𝜕2𝑢

𝜕𝑥2
 (5) 

where c and 𝛼 are the constant phase speed and the diffusion coefficient, respectively. 

To perform GSA, we transform the unknown u from the physical to the spectral plane 

as introduced in Sengupta et al. [2], Sagaut et al. [3] and Sengupta [4], 

𝑢(𝑥, 𝑡) = ∫ �̂�(𝑘, 𝑡)𝑒𝑖𝑘𝑥 𝑑𝑘 (6) 
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where �̂�  represents the Fourier amplitude; k represents the wavenumber and the 

integral is performed over the Bromwich contours in the spectral plane, as given in 

Sengupta [29,33]. After substituting the expression of u from Equation (6) in Equation 

(5), one obtains, 

𝑑�̂�

𝑑𝑡
+ 𝑖𝑐𝑘�̂� = −𝛼𝑘2�̂� (7) 

The above ordinary differential equation, Equation (7), is solved by taking a 

general initial condition 𝑢(𝑥, 0) = 𝑓(𝑥) = ∫ �̂�(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘 to obtain the solution as, 

𝑢(𝑥, 𝑡) = ∫ �̂� (𝑘)𝑒−𝛼𝑘2𝑡𝑒−𝑖𝑘𝑐𝑡 (8) 

We have the physical dispersion relation by taking the unknown 𝑢(𝑥, 𝑡) and 

doing its bi-dimensional Fourier-Laplace transform. We can write: 

𝑢(𝑥, 𝑡) = ∬�̂�(𝑘, 𝜔)𝑒𝑖(𝑘𝑥−𝜔𝑡)𝑑𝑘𝑑𝜔 (9) 

where the integrals are again performed along the Bromwich contours in the 

wavenumber and circular frequency planes, as explained in Sengupta [29,33]. 

Substituting the above expression in Equation (5), the physical dispersion relation is 

finally obtained as, 

𝜔 = 𝑐𝑘 − 𝑖𝛼𝑘2 (10) 

The phase speed is obtained from the dispersion relation expressed as, 

𝑐phys =
𝜔

𝑘
= 𝑐 − 𝑖𝛼𝑘 (11) 

The physical group velocity is therefore defined as, 

𝑉𝑔,phys =
𝜕𝜔

𝜕𝑘
= 𝑐 − 2𝑖𝛼𝑘 (12) 

The role of complex group velocity and energy propagation speed is discussed in 

detail in Sengupta et al. [2] and Sagaut et al. [3]. By expanding the real and imaginary 

parts of Equation (12), we get: 

𝛼 =
𝑖

2𝑘
[(𝑉𝑔,phys)real

− 𝑐] −
(𝑉𝑔,phys)imag

2𝑘
 (13) 

The physical amplification factor is obtained from Equation (8) and is given by,  

𝐺phys =
�̂�(𝑘, 𝑡 + Δ𝑡)

�̂�(𝑘, 𝑡)
= 𝑒−𝛼𝑘2Δ𝑡𝑒−𝑖𝑘𝑐Δ𝑡 (14) 

The numerical solution of Equation (5) involves knowledge of the following 

nondimensional parameters, which depend upon the choice of space-time 

discretization of the governing equation. These are the CFL number (Nc) and the 

diffusion number (Dn), corresponding to the physical processes of the convection-

diffusion equation. These are expressed as the following: 

Nc =
𝑐Δ𝑡

ℎ
, 𝐷𝑛 =

𝛼Δ𝑡

ℎ2
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where h represents the grid spacing, and Δt is the chosen time step. The above non-

dimensional parameters are substituted into Equation (14) to obtain the expression for 

𝐺phys as, 

𝐺phys = 𝑒−𝐷𝑛(𝑘ℎ)2𝑒−𝑖(𝑘ℎ)𝑁𝑐 (15) 

For this 1D convection-diffusion equation, the numerical dispersion relation can 

be derived by drawing an analogy with previous studies on pure convection and pure 

diffusion equations in Sagaut et al. [3] and Sengupta [4]. The numerical dispersion 

relation is given as: 

𝜔num = 𝑘𝑐num − 𝑖𝛼num𝑘2 (16) 

where 𝑐num and 𝛼num are the numerical values of the convection speed and diffusion 

coefficient, respectively. These parameters are not constant during the numerical 

simulation and are functions of the wavenumber. The numerical amplification factor 

can readily be determined from the numerical dispersion relation as follows,  

𝐺num = 𝑒−𝑖𝜔numΔ𝑡 = 𝑒−𝛼num𝑘2Δ𝑡𝑒−𝑖𝑘𝑐numΔ𝑡 (17) 

The phase shift for each time step Δt can be computed using the relation, 

tan(𝛽) = −
𝐼𝑚(𝐺num)

𝑅𝑒(𝐺num)
⇒ 𝛽 = 𝑘𝑐numΔ𝑡 (18) 

The numerical phase shift for a time step Δ t can be computed using the 

relationship as given in Sagaut et al. [3], 

𝑐num

𝑐
=

𝛽

𝑘𝑐Δ𝑡
= −

1

(𝑘ℎ)𝑁𝑐
tan−1 (

𝐼𝑚(𝐺num)

𝑅𝑒(𝐺num)
) (19) 

where the ratio 𝑐num/𝑐 expresses the relationship between the numerical and physical 

phase speeds. 

The numerical group velocity 𝑉𝑔,num  can be derived from the numerical 

dispersion relation by differentiating 𝜔num with respect to k to yield, 

𝑉𝑔,num

𝑉𝑔,phys
=

1

𝑁𝑐

𝑑𝛽

𝑑(𝑘ℎ)
 (20) 

where 𝑉𝑔,phys is the physical group velocity for the convection-diffusion equation and 

is equal to c as given in Sagaut et al. [3]. 

Finally, the numerical diffusion coefficient 𝛼num  can be estimated using the 

numerical amplification factor. From Equation (17), one has the relation |𝐺num| =

𝑒−𝑎num𝑘2Δ𝑡, and thus, the numerical diffusion coefficient is given by, 

𝛼num

𝛼
= −(

ln|𝐺num|

𝐷𝑛(𝑘ℎ)2
) (21) 

In the presented analysis here, time integration is carried out by the R𝐾4 scheme 

that has been used for the NSE also. The NCCD scheme is used for spatial 

discretization; an enhanced version of the CCD scheme was originally introduced by 

Chu and Fan [34]. The CCD schemes compute both the first and second-order 

derivatives simultaneously by using implicit boundary closures. However, due to 
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numerical instability and attenuation near the inflow and outflow, the NCCD scheme 

was developed to avoid these issues by using explicit boundary closure schemes in 

Sengupta et al. [6]. For time integration, the R𝐾4 can be applied to governing equations 

as follows: 
𝜕𝑢

𝜕𝑡
= 𝐿(𝑢). The numerical amplification factor 𝐺num at a j-th node in the 

interior of the computational domain can be expressed as in Sengupta et al. [4,35], 

𝐺𝑗,num = 1 − 𝐴𝑗 +
𝐴𝑗

2

2
−

𝐴𝑗
3

6
+

𝐴𝑗
4

24
 (22) 

where 𝐴𝑗 = −[
Δ𝑡𝐿(�̂�)

�̂�
]
𝑗
. 

For the NCCD scheme, the numerical amplification factor 𝐺𝑗,num is evaluated 

using 𝐴𝑗 which is expressed as in Sagaut et al. [3], 

𝐴𝑗 = 𝑁𝑐 ∑ [𝐷1]𝑗𝑙𝑒
𝑖𝑘(𝑥𝑙−𝑥𝑗)

𝑁

𝑙=1
− 𝐷𝑛∑ [𝐷2]𝑗𝑙𝑒

𝑖𝑘(𝑥𝑙−𝑥𝑗)
𝑁

𝑙=1
 (23) 

where [𝐷1] and [𝐷2] are formulated as {𝑢′} =
1

ℎ
[𝐷1]{𝑢} and {𝑢″} =

1

ℎ
[𝐷2]{𝑢}, where 

the details of matrices [𝐷1] and [𝐷2] are given in Sagaut et al. [3] and Sengupta et al. 

[6]. 

Following the procedure from Equations (5)–(23), the Nc and Dn values are 

calculated for Δt = 5 × 10−5 and Δt = 2 × 10−5, with h = 
1

256
 for Re = 8000, and the 

|
𝐺num

𝐺phys
|-contours in the (kh, Nc)-plane are shown plotted for these time steps in Figures 

5 and 6, respectively. 

 
Figure 5. The contours of |Gnumerical/Gphysical| are shown in the (kh, Nc)-plane for the 

time step of Δt = 5 × 10−5.  

The diffusion number is as indicated, and the operational Nc is indicated by the 

vertical red line in Figures 5 and 6. 
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Figure 6. The contours of |Gnumerical/Gphysical| are shown in the (kh, Nc)-plane for the 

time step of Δt = 2 × 10−5. 

The Dn and the operational Nc are as indicated in Figures 5 and 6, with the 

dashed red line represents the Nc value for both the time steps and |
𝐺num

𝐺phys
| values at 

that operating range of Nc for both the time steps that have been shown in Figure 7. 

 
Figure 7. |Gnumerical/Gphysical| versus kh at the indicated Nc = 0.0128 and 0.00512 for 

the cases of Δt = 5 × 10−5 (dashed line) and Δt = 2 × 10−5 (solid line). 

From Figure 7, it is evident that the results for calculated Nc = 0.0128 and Dn = 

4.096 × 10−4 with the time step of Δt = 5 × 10−5 show higher attenuation at the higher 

wavenumbers than for the lower time step of Δt = 2 × 10−5 (for which Nc and Dn values 
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are 0.00512 and 1.6384 × 10−4, respectively). This explains the late unsteadiness for 

the higher time step case and earlier unsteady behavior for the lower time step case, 

even when the same Re flow is computed, as shown in Figure 4. Lowering the time 

step retains the physical disturbance vorticity amplitude without attenuating those at 

the higher wavenumbers. In contrast, for the higher time step case, those excitations 

at higher wavenumbers are attenuated, as shown in Figure 7. This indicates the flow 

is diffusion-dominated, with the diffusion number playing the central role as opposed 

to the commonly held belief about the role of Nc for supercritical Re.  

While the discussion on GSA of the numerical method is presented here using 

the convection-diffusion equation due to its one-to-one correspondence with the NSE, 

other investtigations have used GSA for compressible flows by Tan et al. [36], 

nonlinear waves by Cheviakov et al. [37], and other aspects of the numerical accuracy 

of the solution of the NSE by Coppola et al. [38,39] and Sjögreen et al. [40]. 

5. Onset of Instability 

The higher magnitude of implicit excitation for LDC flow produced at a lower 

temporal resolution (as explained with reference to Figure 7) causes the flow to show 

the onset of growth before that for the higher time step case, which is shown in Figure 

8. From Figure 8, it can also be inferred that with a decrease in Re, the onset time of 

linear instability increases asymptotically for Δt = 5 × 10−5, and the flow inside the 

LDC becomes steady below a critical Re value, whose exact value is dependent on the 

grids used and the chosen time step. 

 
Figure 8. The onset of linear instability for the LDC flow is plotted as a function of 

Re. 

It is essential to highlight an aspect of the computed results shown in Figure 8 

for Δt = 2 × 10−5 case that has been reported here. In Figure 2, one can see the case 

for Re = 8500, where the LDC flow starts off with the display of early violent 

transients. Subsequently, the transients decay due to physical diffusion. Many vortex-
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dominated flows display such transients and are characterized by the presence of 

multimodal space-time dynamics, as reported in Sengupta et al. [32,41]. Such flows 

are also referred to as influenced by oscillator-type instability in Chomaz [42]. 

The results for the LDC flow cases obtained with Δt = 2 × 10−5, which displayed 

unsteadiness in Figure 8, all the computations were started impulsively. The active 

numerical diffusion allows a larger range of higher wavenumbers to remain less 

attenuated, as shown and explained for the data in Figure 7.  

So far, we have noted that LDC flow at higher Re is receptive to the background 

numerical disturbances. Although it is a high Re problem, these disturbances at high 

wavenumbers are amplified due to Gibbs’ phenomenon and the growth of aliasing 

error. Such disturbance growth is attenuated due to numerical diffusion, which is 

indicated by Dn. Following the growth by a linear mechanism, the physical 

nonlinearity becomes dominant which leads to the formation of the limit cycle about 

a mean value (𝜔𝑚). It has been observed that the increase in Re causes an increase in 

𝜔𝑚, as shown in Figure 9. This figure also shows that this mean value computed with 

two different time steps here does not alter the slope of (𝜔𝑚 versus Re)-curve, for both 

the values of Δt = 5 × 10−5 and Δt = 2 × 10−5 cases, with the data points falling along 

the same line. 

 

Figure 9. The mean value of vorticity (𝜔𝑚) versus Re for time steps of Δt = 5 × 10−5 

and Δt = 2 × 10−5. 

High-fidelity DNS and it’s utility in machine learning 

Machine learning (ML) is essentially the process of building models from data 

using optimization and regression techniques. Because of recent advancements in 

computational power and data availability, we have much more advanced optimization 

algorithms, and that’s one of the reasons machine learning models like proper 

orthogonal decomposition (POD), dynamic mode decomposition (DMD), physics-

informed neural networks (PINNs) have gained popularity in creating efficient models 

for studying, optimizing, and controlling complex fluid flows. However, some of these 

methods rely on high-precision data produced by high-accuracy DNS methods. In 
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Ranade et al. [17], an ML solver was introduced for solving steady, incompressible 

NSEs without requiring training data. The solver simultaneously generates and learns 

solutions for training by approximating PDE residuals using discretization techniques 

and updated network weights based on the L2-norm of the residuals.  

High-fidelity DNS data is often used to develop reduced order models (ROMs), 

which retain the critical dynamics of flow while reducing computational costs in 

Sengupta et al. [43]. ML models introduced in Drakoulas et al. [44] combine ML with 

singular value decomposition (SVD) to create a Fast SVD-ML-ROM framework for 

reducing the computational time and forecasting the dynamics of 2D LDC. High-

fidelity DNS data informs ML models in medium-range global weather forecasting 

used in Lam et al. [45]. DNS generates high-resolution flow data that train ML models 

to reconstruct low-fidelity simulation to DNS-like accuracy in Kochkov et al. [46]. 

PINNs utilize DNS data to train models that inherently retain flow physics by 

incorporating the governing equation into the loss function of the neural network. 

Salim et al. [47] extended PINNs for super-resolution studies of Rayleigh-Benard 

convection, demonstrating how DNS data helps upscale low-resolution data while 

preserving physical accuracy. DNS data also enables the development of stabilization 

techniques like Leray-α models and turbulence closures in numerical simulations, 

improving the fidelity of ML-enhanced turbulence models as in Pereira et al. [48] and 

Rogallo [49]. Performing POD of such flows enables one to investigate instability 

modes involved, visualize their spatial and temporal pictures, and reconstruct the data 

efficiently Sengupta [29,33] and Sengupta et al. [43]. 

There were many inconsistencies of results reported as DNS of homogeneous 

isotropic turbulent flows by the pseudo-spectral method in Rogallo [50] due to the 

alteration of the governing NSE by adding hyper- and hypo-viscosity terms in Yueng 

et al. [51], Buaria and Sreenivasan [52], Buaria et al. [53,54] Orszag [55], Gottlieb and 

Orszag [56]. Ishihara et al. [57,58], Doering and Gibbon [59]. Kraichnan [60] and 

Batchelor [61]. In Brachet et al. [62], this pseudo-spectral method was used to study 

the Taylor-Green vortex problem for 2D decaying turbulence, which has been studied 

in depth and rectified very recently in Sengupta et al. [63]. In recent times, with the 

advent of high accuracy, HPC of DNS emphasis has shifted from pure DNS of high 

Reynolds number flows to applications related to ROM and ML, as given in Brunton 

et al. [25], Jiang et al. [26], Amalinadhi [27], McDevitt et al. [28], Drakoulas et al. 

[44], Pawar and San [64], Quaini et al. [65], Takhirov et al. [66], Chung et al. [67], 

Lucor et al. [68], Lam et al. [45], Kochkov et al. [46], Salim et al. [47], Sofos et al. 

[69], Bastian et al. [49].  

6. Summary and conclusion 

Some of the principal activities in high-accuracy scientific computing are related 

to the DNS of canonical instability problems and the DNS of turbulent flows, with and 

without multiphysics rates of strains in Zhou [70], Zhou et al. [71,72], Joshi et al. [73], 

Zhou [74], Zhou et al. [75], Pereira et al. [76]. It is worth noting that solving instability 

problems is more physics-driven, unlike the DNS of turbulent flows, which tends to a 

nonlinear invariant saturated state. For this reason, an instability problem has been 

identified for the presented results. 
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In the present research, the LDC flow has been computed for a supercritical 

Reynolds number to show the importance of the receptivity to inherent numerical 

disturbances for a vortex-dominated flow. Computing such flows by high-accuracy 

methods in Sengupta et al. [6] displays the receptivity aspect graphically, as described 

in Sengupta [29] due to the properties of the adopted numerical methods. 

It is usually understood that such instabilities occurring at high Reynolds 

numbers would be dominated by the CFL number as in Burggraf [12], Schreiber and 

Keller [13] for the spatiotemporal growth of the disturbance field, as demonstrated by 

the bifurcation phenomena described in Landau and Lifshitz [25], Drazin and Reid 

[30], Ekhaus [31], Sengupta et al. [32]. For the LDC flow, the disturbance growth is 

shown in Figure 2, which shows that following the growth of disturbance vorticity by 

a linear mechanism, the physical nonlinearity becomes dominant, which leads to the 

formation of the limit cycle. However, the present state noted in the literature 

demonstrates the uncertainty about the onset of this bifurcation phenomenon, as 

indicated for the LDC flow in Figures 3 and 4. Note that early researches in Auteri et 

al. [9] and Sahin and Owens [18] have identified the critical Reynolds number to be 

above 8000, while the presented results here clearly indicate unsteady flow for Re = 

8000, implying the critical Reynolds number to be below Re = 8000. In the present 

research, with the help of global spectral analysis given in Sengupta et al. [2], Sagaut 

et al. [3], Sengupta [4] and Sengupta et al. [5], this ambiguity has been explained for 

the first time by using the model convection-diffusion equation to show the relative 

importance of the diffusion number as opposed to the CFL number in Figures 5–7. 

These demonstrate the centrality of the numerical diffusion number (Dn) for the LDC. 

The disturbance growth is due to the presence of omnipresent numerical errors that are 

highly sensitive to the numerical properties at high wavenumbers due to Gibbs’ 

phenomenon, aliasing, and other sources of errors. As shown in Figure 7, taking a 

higher time step causes attenuation of these high wavenumber error components. The 

receptivity of the flow to high wavenumber disturbances is determined by the onset of 

the linear stage of instability to the mean value of vorticity after the nonlinear 

saturation forming the limit cycle, as indicated in Figures 8 and 9 for the two time-

step cases demonstrated in the present research. We have unsteady solutions for Re = 

8000 for both the time steps in Figure 4. Thus, the observed results are compatible 

and as explained with the help of the GSA in Figures 5 and 6 of the model equations 

and the HPC of the NSE for many vortex-dominated flows, as in the case of the LDC 

flow studied here.  

In conclusion, the present research achieved the following: (ⅰ) By performing 

DNS of the canonical transitional flow in an LDC, finer physical details are unraveled 

for the flow following the constraints of disturbance growth as given by the GSA of 

the related convection-diffusion equation, which captures the convection and diffusion 

processes of the governing Navier-Stokes equation very accurately; (ⅱ) in simulating 

LDC flow for two different time steps, it is noted that contrary to the commonly held 

perception of flow becoming more unsteady with the increase in CFL number (by 

increasing the time step), this flow captures unsteadiness better with decreased time 

steps due to reduced attenuation with the diffusion number. Such a behavior of the 

computed flow field is consistent with the property predicted by GSA; (ⅲ) thus, in 

various fields of data sciences, such as POD, DMD, ROM, and ML, which require a 
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very high-fidelity data set for analysis and training, the presented results here for the 

canonical LDC flow can be used as the benchmark; (ⅳ) specifically, for methods of 

ML that work like optimizing the data by regression analysis, they can use tools like 

GSA to convert the same problems as one of constrained optimization, thereby 

improving the fidelity of the data set. 

A direct extension of the present results could continue computing the LDC flow 

with a smaller time step to capture the critical Reynolds number for the Hopf 

bifurcation phenomena. Obtained DNS results of the transitional and turbulent flows 

should be analyzed with tools for the NSE in describing the flows for (a) estimating 

disturbance growth by mechanical energy, as given in Sengupta [29]; (b) estimating 

growth by disturbance enstrophy transport equation as given in Sengupta [29]; and (c) 

tracking coherent vortical structures [77]. 
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