References
Cheng Z, Jian S, Rashidi T H, et al. Integrating household travel survey and social media data to improve the quality of od matrix: A comparative case study. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(6): 2628-2636.doi: 10.1109/TITS.2019.2958673
Xu Z, Li J, Lv Z, et al. A classification method for urban functional regions based on the transfer rate of empty cars. IET Intelligent Transport Systems, 2022, 16(2): 133-147. doi: 10.1049/itr2.12134
Lv Z, Li, J, Dong C, Li H, et al. Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalization index. Data & Knowledge Engineering, 2021,135, 101912. doi: 10.1016/j.datak.2021.101912
Li J, Lv Z, Ma Z, Wang X, et al. Optimization of spatial-temporal graph: A taxi demand forecasting model based on spatial-temporal tree. Information Fusion, 2024,104, 102178. doi: 10.1016/j.inffus.2023.102178
Lv Z, Ma Z, Xia F, et al. A transportation Revitalization index prediction model based on Spatial-Temporal attention mechanism. Advanced Engineering Informatics,2024, 61, 102519. doi: 10.1016/j.aei.2024.102519
Li H, Lv Z, Li J, et al. Traffic flow forecasting in the covid-19: A deep spatial-temporal model based on discrete wavelet transformation. ACM Transactions on Knowledge Discovery from Data, 2023, 17(5): 1-28.doi: 10.1145/3564753
Xu Z, Lv Z, Chu B, et al. Progress and prospects of future urban health status prediction. Engineering Applications of Artificial Intelligence, 2024,129, 107573. doi: 10.1016/j.engappai.2023.107573
Xu Z, Lv Z, Li J, et al. A novel approach for predicting water demand with complex patterns based on ensemble learning. Water Resources Management, 2022, 36(11): 4293-4312. doi: 10.1007/s11269-022-03255-5
Lv Z, Wang X, Cheng Z, et al. A new approach to COVID-19 data mining: A deep spatial–temporal prediction model based on tree structure for traffic revitalization index. Data & Knowledge Engineering, 2023, 146: 102193. doi: 10.1016/j.datak.2023.102193
Sheng Z, Lv Z, Li J, et al. Taxi travel time prediction based on fusion of traffic condition features. Computers and Electrical Engineering, 2023, 105: 108530. doi: 10.1016/j.compeleceng.2022.108530
Li Y, Li J, Lv Z, et al. GASTO: A fast adaptive graph learning framework for edge computing empowered task offloading. IEEE Transactions on Network and Service Management, 2023, 20(2): 932-944. doi: 10.1109/TNSM.2023.3250395
Lv Z, Li J, Xu Z, et al. Parallel computing of spatio-temporal model based on deep reinforcement learning,International Conference on Wireless Algorithms, Systems, and Applications. Cham: Springer International Publishing, 2021: 391-403.doi: 10.1007/978-3-030-85928-2_31
Xu Z, Lv Z, Chu B, et al. Fast autoregressive tensor decomposition for online real-time traffic flow prediction. Knowledge-Based Systems, 2023, 282: 111125. doi: 10.1016/j.knosys.2023.111125
Lv Z, Cheng Z, Li J, et al. TreeCN: time series prediction with the tree convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 2023. doi: 10.1109/TITS.2023.3325817
Ye R, Lv Z, Xu Z, et al. MT-CNN: A Lightweight Spatial-Temporal Convolutional Neural Network for Deep Learning of Complex Trajectory Distributions based on Area Partitioning,2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024: 1-8.doi: 10.1109/IJCNN60899.2024.10651261
Xu Z, Lv Z, Chu B, et al. A Fast Spatial-temporal Information Compression algorithm for online real-time forecasting of traffic flow with complex nonlinear patterns. Chaos, Solitons & Fractals, 2024, 182: 114852. doi: 10.1016/j.chaos.2024.114852
Cyril A, Mulangi R H, George V. Modelling and forecasting bus passenger demand using time series method,2018 7th international conference on reliability, infocom technologies and optimization (trends and future directions)(ICRITO). IEEE, 2018: 460-466.doi: 10.1109/ICRITO.2018.8748443
Jiao P, Li R, Sun T, et al. Three revised Kalman filtering models for short‐term rail transit passenger flow prediction. Mathematical Problems in Engineering, 2016, 2016(1): 9717582.doi: 10.1155/2016/9717582
Milenković M, Švadlenka L, Melichar V, et al. SARIMA modelling approach for railway passenger flow forecasting. Transport, 2018, 33(5): 1113-1120.doi: 10.3846/16484142.2016.1139623
Sun Y, Leng B, Guan W. A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system. Neurocomputing, 2015, 166: 109-121.doi: 10.1016/j.neucom.2015.03.085
Wang X, An K, Tang L, et al. Short term prediction of freeway exiting volume based on SVM and KNN. International Journal of Transportation Science and Technology, 2015, 4(3): 337-352. doi: 10.1260/2046-0430.4.3.337
Hou Y, Edara P, Chang Y. Road network state estimation using random forest ensemble learning, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2017: 1-6.doi: 10.1109/ITSC.2017.8317743
Joubert J W, De Waal A. Activity-based travel demand generation using Bayesian networks. Transportation Research Part C: Emerging Technologies, 2020, 120: 102804.doi: 10.1016/j.trc.2020.102804
Guo G, Zhang T. A residual spatio-temporal architecture for travel demand forecasting. Transportation Research Part C: Emerging Technologies, 2020, 115: 102639.doi: 10.1016/j.trc.2020.102639
Li X, Xu Y, Zhang X, et al. Improving short-term bike sharing demand forecast through an irregular convolutional neural network. Transportation research part C: emerging technologies, 2023, 147: 103984. doi: 10.1016/j.trc.2022.103984
Zhao T, Huang Z, Tu W, et al. Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction. Computers, Environment and Urban Systems, 2022, 94: 101776.doi: 10.1016/j.compenvurbsys.2022.101776
Xu Z, Lv Z, Li J, et al. A Novel Perspective on Travel Demand Prediction Considering Natural Environmental and Socioeconomic Factors. IEEE Intelligent Transportation Systems Magazine (April 2022), 2-25. 2022. doi: 10.1109/MITS.2022.3162901
Tang J, Gao F, Liu F, et al. Understanding spatio-temporal characteristics of urban travel demand based on the combination of GWR and GLM. Sustainability, 2019, 11(19): 5525.doi: 10.3390/su11195525
Wang D, Yang Y, Ning S. DeepSTCL: A deep spatio-temporal ConvLSTM for travel demand prediction,2018 international joint conference on neural networks (IJCNN). IEEE, 2018: 1-8.doi: 10.1109/IJCNN.2018.8489530
Liang J, Tang J, Gao F, et al. On region-level travel demand forecasting using multi-task adaptive graph attention network. Information Sciences, 2023, 622: 161-177. doi: 10.1016/j.ins.2022.11.138
Zhang J, Zheng Y, Qi D. Deep spatio-temporal residual networks for citywide crowd flows prediction, Proceedings of the AAAI conference on artificial intelligence. 2017, 31(1). doi: 10.1609/aaai.v31i1.10735
Yao H, Tang X, Wei H, et al. Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction, Proceedings of the AAAI conference on artificial intelligence. 2019, 33(01): 5668-5675.doi: 10.1609/aaai.v33i01.33015668
Liu L, Qiu Z, Li G, et al. Contextualized spatial–temporal network for taxi origin-destination demand prediction. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3875-3887.doi: 10.1109/TITS.2019.2915525