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Abstract: This research aims to enhance taxi travel demand forecasting for sustainable urban 

traffic management and planning. We extend the Seasonal Autoregressive Integrated Moving 

Average model into a high-dimensional tensor form by treating the urban transport network as 

a Euclidean space and introducing Tucker decomposition. This novel approach, both 

theoretically significant and practically applicable, represents time series data as tensors to 

better capture multimodal structures and correlations, improving predictive accuracy. Tucker 

decomposition reduces computational complexity and memory requirements, making it ideal 

for large-scale urban traffic network prediction. Experiments on six real-world datasets show 

that the model’s MAE and RMSE are reduced by about 39.43% and 27.01% on average, 

respectively, compared to the baseline model. Notably, the model is computationally very 

efficient and takes only a relatively short time to train., suitable for real-time traffic 

management, congestion mitigation, and resource optimization. In summary, this work 

innovates time series analysis, providing an efficient and precise tool for urban traffic 

management and planning, contributing to sustainable urban transportation advancement. 

Keywords: taxi travel demand forecasting; tucker decomposition; seasonal autoregressive 

integrated moving average 

1. Introduction 

Taxis have long been an important component of urban transport. Taxis are a 

flexible transport option that passengers can hail anytime, anywhere, without the need 

to plan ahead or wait for public transport [1–3]. Timely and accurate demand 

forecasting can reduce traffic congestion [4,5], ease traffic pressure, improve overall 

traffic efficiency [6], reduce environmental pollution [7], improve people’s traveling 

efficiency [8], and save time and costs [9]. Taxi travel demand forecasting is of great 

practical importance to policy makers and urban planners. It can help optimize the 

dynamic allocation of transportation resources, predict changes in demand at different 

time periods and regions, and help dispatch taxis more efficiently, reduce idling rates, 

and ease traffic pressure during peak periods. Through accurate demand forecasting, 

traffic management authorities can adjust the number and location of taxis according 

to the actual situation, thus improving the overall efficiency of traffic operation. Cab 

travel demand forecasting can provide valuable data support for urban infrastructure 

development. Urban planners can use the forecast to understand which areas have 

consistently high demand, and then optimize road design, plan new transportation hubs 

or parking lots, and rationally lay out public transportation facilities in order to 

alleviate traffic congestion and enhance the travel experience of residents. 

Seasonal Autoregressive Integrated Moving Average (SARIMA) is a time series 
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analysis model for modeling and forecasting time series data. However, most of the 

current SARIMA models are unable to model and forecast multiple time series at the 

same time and can only be calculated one by one. Therefore, its computational cost is 

high. In addition, SARIMA cannot capture the correlation between multiple time series, 

which may adversely affect its modeling effect. 

In taxi travel demand forecasting, if the transport network is modeled as a 

Euclidean space (grid format), then the time series data can be represented in the form 

of a tensor. Processing time series in tensor form preserves the correlation within the 

time series [10,11]. 

Tensor decomposition is a technique to decompose high-dimensional data [12,13], 

which is widely used in the fields of data dimensionality reduction, feature extraction, 

data compression, and pattern recognition [14,15]. Through tensor decomposition, a 

multi-dimensional tensor can be represented as a set of low-rank core tensors and 

modal matrices in the form of a product, in order to extract and represent the key 

information and structure in the tensor [16,17].  

In this paper, this work deal with time series in the form of a tensor by modeling 

the traffic network as a Euclidean space and applying Tucker decomposition to the 

tensor to obtain the core tensor and the factor matrix. The temporal correlation between 

the core tensor can be fully preserved by the factor matrix. Then, this work extends 

SARIMA to the tensor form and apply it to the core tensor. Finally, the core tensor at 

the next moment is predicted by the SARIMA model, and the inverse Tucker 

decomposition is performed to obtain the predicted value at the next moment. The 

contributions of this paper are 2 points: 

With the help of Tucker decomposition, this work extends the classical SARIMA 

model to tensor form, which enables the modified SARIMA model not only to deal 

with multiple time series simultaneously but also reduces the computational 

complexity as well as the memory requirement. 

This work used six real-world datasets to evaluate the proposed prediction model 

and demonstrated that the proposed model not only has higher prediction accuracy but 

also requires less time cost. 

2. Literature review 

Traditional statistical methods are recognized and widely used by researchers due 

to their advantages such as strong interpretability and solid theoretical foundation. 

Cyril et al. [18] used a univariate time series Seasonal Autoregressive Integrated 

Moving Average (ARIMA) model to predict the demand for inter-district public 

transport travel from Trivandrum to five other districts of Kerala. Jiao et al. [19] 

proposed a modified Kalman filter model based on error correction coefficients, a 

modified Kalman filter model based on historical bias, a modified Kalman filter model 

based on Bayesian combination and nonparametric regression based on the traditional 

Kalman filter method and applied it to short-term rail traffic forecasting. Milenković 

et al. [20] chose the least square residuals based on the SARIMA model to predict train 

passenger flow. However, traditional statistical methods not only can only model a 

single time series but also have difficulty in capturing the correlation between multiple 
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time series data sequences. Therefore, the traditional statistical model cannot fully 

reflect the spatial characteristics of historical traffic data. 

As computer performance continues to improve, researchers are increasingly 

choosing machine-learning approaches for travel demand modeling and forecasting. 

These algorithms include support vector machines, random forests, Bayesian networks, 

neural networks, and deep learning models [21–23]. Among them, deep learning has 

received a lot of attention from researchers in the last decade. Deep learning models 

such as convolutional neural network, recurrent neural network and its variants, 

Transformer model for sequence prediction, attention mechanism, and graph 

convolutional neural network have been used to predict the state of the city [24]. Li et 

al. [25] based on Pearson’s correlation coefficient and dynamic time regularization to 

calculate the correlation between different regions, using irregular convolution to 

capture the spatial correlation between the data, and Long Short-Term Memory to 

capture the temporal correlation between the data, thus accurately completing the 

demand prediction of shared bikes. Irregular convolution associates regions with 

similar temporal usage patterns, so the IrConv+LSTM approach is superior to the 

general Conv+LSTM model. Zhao et al. [26] viewed the built environment as a 

dynamic feature and proposed a graph deep learning-based approach coupled with the 

spatio-temporal influence of the built environment (GDLBE) to enhance short-term 

transit travel demand prediction. Xu et al. [27] integrated natural environmental factors 

and socio-economic factors for predicting urban travel demand. Tang et al. [28] used 

a combination of geographically-weighted regression (GWR) and generalized linear 

modeling (GLM) combination to identify the factors affecting travel demand. Wang 

et al. [29] extracted the spatio-temporal features of taxi travel demand through the 

ConvLSTM model to predict the taxi travel demand. Liang et al. [30] proposed a multi-

task adaptive recurrent graphical attention network that can predict travel demand at 

the regional level. 

The prediction performance of deep learning models is excellent, whether the 

traffic road network is modeled as a form of Euclidean space or non-Euclidean space. 

However, there is an unavoidable problem with deep learning models; the 

computational complexity and time cost it requires for modeling and prediction is high, 

despite the current computational performance of computers making new 

breakthroughs every year. 

3. Preliminaries 

3.1. Notations 

Lowercase bold letters denote vectors, e.g.    Nx  .Capitalised bold letters 

denote matrices, e.g. 
   M NX .Bold Roman letters denote higher-order (N ≥ 3) 

tensors, e.g., 1 2  ··· NI I I  
X  . The (m,n)-th entity of the tensor 𝓧  is denoted as 

𝒙𝑚,𝑛.The Frobenius paradigm for the tensor 𝓧 is denoted as ‖𝓧‖𝑭 = √∑ 𝒙𝒎,𝒏
𝟐

𝒎,𝒏 . 

The n-mode product of a tensor 𝓧 ∈
 𝐼1×𝐼2× ···×𝐼𝑁   with a matrix 𝑼 ∈

 𝐼𝑛×𝑅𝑛 
 is 

defined as 𝓨 = 𝓧 ×𝒏 𝑼𝑻 ∈
 𝐼1× ···×𝐼𝑛−1×𝑅𝑛×𝐼𝑛+1×···×𝐼𝑁 . The mode-n expansion of the 

tensor 𝓧 is denoted as 𝑿(𝑛)  =  𝑈𝑛𝑓𝑜𝑙𝑑(𝓧) ∈
 𝐼𝑛×∏ 𝐼𝑛𝑖≠𝑛 , The inverse of the tensor 
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expansion is fold, which is denoted as 𝓧 =  𝐹𝑜𝑙𝑑(𝑿(n)).  

3.2. Tucker decomposition 

The Tucker decomposition allows a higher-order tensor 𝓧𝒕 ∈  𝐼1×𝐼2× ···×𝐼𝑁  to be 

expressed as a product of a projection matrix and a factor matrix, as shown in Equation 

(1).  

𝓧𝒕 ≈ 𝓖𝒕 ×𝟏 𝑼(𝟏) ×𝟐 𝑼(𝟐) ⋯ ×𝑵 𝑼(𝑵)

𝒔. 𝒕. 𝑼(𝒏)𝑻
𝑼(𝒏) = 𝑰, 𝒏 = 𝟏, . . . , 𝑵

 

(

1

) 

where 𝓖𝒕 ∈
 𝐼1×𝐼2× ···×𝐼𝑁  is a low-rank core tensor, 𝑼(𝒏) ∈

 𝐼𝑛×𝑅𝑛  , 𝑅𝑛＜ 𝐼𝑛 , 𝑰  is 

identity matrix. The Tucker rank of a tensor 𝓧𝒕 is represented by a vector containing 

N non-negative integers: [𝑅1, . . . , 𝑅𝑛 , . . . , 𝑅𝑁], Each element of the Tucker rank vector 

corresponds to the rank of each factor matrix in the Tucker decomposition. Figure 1 

shows the Tucker decomposition diagram of the third-order tensor 

 
Figure 1. Tucker decomposition.  

Note: A, B, C are factor matrices, 𝒢 is the core tensor. 

3.3. SARIMA 

SARIMA is an extension of the ARIMA model to effectively handle seasonal 

time series data. It is represented as SARIMA (p, d, q) (P, D, Q, S). For a given time, 

series matrix 𝑿 ∈
 𝑀×𝑁 

, the SARIMA model can be represented as Equation (2). 

𝛥𝐷𝛥𝑑𝒙𝒕 = ∑ 𝛼𝑖

𝑝

𝑖=1

𝛥𝐷𝛥𝑑𝒙𝒕−𝒊 − ∑ 𝛽𝑖

𝑞

𝑖=1

𝝃𝒕−𝒊 + ∑ 𝛾𝑖

𝑃

𝑖=1

𝛥𝐷𝛥𝑑𝒙𝒕−𝑺𝒊 − ∑ 𝜗𝑖

𝑄

𝑖=1

𝝃𝒕−𝑺𝒊 + 𝝃𝒕  (2) 

where 𝜉𝑡 is the error term at time t，S is Seasonal cycle，{𝛼𝑖}𝑖=1
𝑝

, {𝛽𝑖}𝑖=1
𝑞

, 

{𝛾𝑖}𝑖=1
𝑃 , {𝜗𝑖}

𝑖=1
𝑄

 are the coefficients of AR, MA, SAR and SMA respectively. P, 

q, P, Q, d and D are the orders of AR, MA, SAR, SMA, difference and seasonal 

difference, respectively. 

4. Methodology 

In this section, this work extends the SARIMA model to the tensor form and 

incorporate the Tucker decomposition technique. SARIMA is an extension of the 

ARIMA model to effectively handle seasonal time series data. It is represented as 
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SARIMA (p, d, q) (P, D, Q, S). The tensor form of SARIMA can be expressed in the 

form of Equation (3): 

𝛥𝐷𝛥𝑑𝓖𝒕 = ∑ 𝛼𝑖

𝑝

𝑖=1

𝛥𝐷𝛥𝑑𝓖𝒕−𝒊 − ∑ 𝛽𝑖

𝑞

𝑖=1

𝜺𝒕−𝒊 + ∑ 𝛾𝑖

𝑃

𝑖=1

𝛥𝐷𝛥𝑑𝓖𝒕−𝑺𝒊 − ∑ 𝜗𝑖

𝑄

𝑖=1

𝜺𝒕−𝑺𝒊 + 𝜺𝒕  (3) 

where 𝜀 is the random error and 𝒢𝑡 is the core tensor of 𝓧𝒕. 

This work defines TD-SARIMA as the following optimization problem: 

𝑚𝑖𝑛{𝒢𝑡,𝑼(𝑘),𝜀𝑡−𝑖,𝛼𝑖,𝛽𝑖,𝛾𝑖,𝜗𝑖} ∑ (
1

2

𝑇

𝑡=𝑆𝑃+𝑆𝑄+1
 ‖𝛥𝐷𝛥𝑑𝓖𝒕 − ∑ 𝛼𝑖

𝑝

𝑖=1
𝛥𝐷𝛥𝑑𝓖𝒕−𝒊

+ ∑ 𝛽𝑖

𝑞

𝑖=1
𝜺𝒕−𝒊 − ∑ 𝛾𝑖

𝑃

𝑖=1
𝛥𝐷𝛥𝑑𝓖𝒕−𝑺𝒊 + ∑ 𝜗𝑖

𝑄

𝑖=1
𝜺𝒕−𝑺𝒊‖

𝐹

2

  

+
1

2
‖𝛥𝐷𝛥𝑑𝓖𝒕 − 𝛥𝐷𝛥𝑑𝓧𝑡×1

𝑼(1)𝑇
⋯×𝑁 𝑼(𝑁)𝑇

‖
𝐹

2
)  

𝑠. 𝑡. 𝑈(𝑘)𝑇
𝑈(𝑘) = 𝐼, 𝑘 = 1,2, ⋯ , 𝑁  (4) 

Then, for ease of derivation, this work subjects the tensor in the optimization 

problem (4) to a mode-n expansion operation, and this work obtain the following form: 

𝑚𝑖𝑛
{𝐺𝑡

(𝑘)
,𝑼(𝑘),𝐸𝑡−𝑖

(𝑘)
,𝛼𝑖,𝛽𝑖,𝛾𝑖,𝜗𝑖}

∑ ∑ (
1

2
 ‖𝛥𝐷𝛥𝑑𝑮𝒕

(𝒌)
𝑁

𝑘=1

𝑇

𝑡=𝑆𝑃+𝑆𝑄+1

− ∑ 𝛼𝑖

𝑝

𝑖=1
𝛥𝐷𝛥𝑑𝑮𝒕−𝒊

(𝑘) + ∑ 𝛽𝑖

𝑞

𝑖=1
𝑬𝒕−𝒊

(𝑘)

− ∑ 𝛾𝑖

𝑃

𝑖=1
𝛥𝐷𝛥𝑑𝑮𝒕−𝑺𝒊

(𝑘) + ∑ 𝜗𝑖

𝑄

𝑖=1
𝑬𝒕−𝑺𝒊

(𝑘)‖
𝐹

2

+
1

2
‖𝛥𝐷𝛥𝑑𝑮𝒕

(𝑘) − 𝑼(𝑘)T
𝓧𝑡𝑼(−𝑘)T

‖
𝐹

2
) 

𝑠. 𝑡. 𝑼(𝑘)𝑇
𝑼(𝑘) = 𝐼, 𝑘 = 1,2, ⋯ , 𝑁  (5) 

where 𝑼(−𝑘)T
= 𝑼(𝑘)T

 ···𝑼(𝑘+1)T
𝑼(𝑘−1)T

 ··· 𝑼(1)T
∈

 ∏ 𝑅𝑗×∏ 𝐼𝑗𝑗≠𝑘𝑗≠𝑘  . 

Next, this work derives the update method for each parameter. 

Update 𝑮𝒕
(𝒌)

 

The part of Equation (5) with respect to 𝑮𝒕
(𝒌)

 is: 

𝑚𝑖𝑛
{𝐺𝑡

(𝑘)
}

∑ ∑
1

2
 ‖𝛥𝐷𝛥𝑑𝑮𝒕

(𝒌) − ∑ 𝛼𝑖

𝑝

𝑖=1
𝛥𝐷𝛥𝑑𝑮𝒕−𝒊

(𝒌) + ∑ 𝛽𝑖

𝑞

𝑖=1
𝑬𝒕−𝒊

(𝒌)
𝑁

𝑘=1

𝑇

𝑡=𝑆𝑃+𝑆𝑄+1

− ∑ 𝛾𝑖

𝑃

𝑖=1
𝛥𝐷𝛥𝑑𝑮𝒕−𝑺𝒊

(𝒌) + ∑ 𝜗𝑖

𝑄

𝑖=1
𝑬𝒕−𝑺𝒊

(𝒌)‖
𝐹

2

+
1

2
‖𝛥𝐷𝛥𝑑𝑮𝒕

(𝒌) − 𝑼(𝑘)T
𝓧𝑡𝑼(−𝑘)T

‖
𝐹

2
) 

(6) 

By taking the partial derivatives of Equation (6) and making them zero, this work 

can update 𝑮𝒕
(𝒌)

 by Equation (7): 
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𝛥𝐷𝛥𝑑𝑮𝒕
(𝒌)

=
1

2
(𝑼(𝑘)T

𝓧𝑡𝑼(−𝑘)T
+ ∑ 𝛼𝑖

𝑝

𝑖=1
𝛥𝐷𝛥𝑑𝑮𝒕−𝒊

(𝒌)
_ ∑ 𝛽𝑖

𝑞

𝑖=1
𝑬𝒕−𝒊

(𝒌)

+ ∑ 𝛾𝑖

𝑃

𝑖=1
𝛥𝐷𝛥𝑑𝑮𝒕−𝑺𝒊

(𝒌)
_ ∑ 𝜗𝑖

𝑄

𝑖=1
𝑬𝒕−𝑺𝒊

(𝒌)
) 

(7) 

Update 𝑼(𝒌), 

The part of Equation (5) with respect to 𝑼(𝒌) is: 

𝑚𝑖𝑛{𝑈(𝑘)} ∑ ∑
1

2
‖𝛥𝐷𝛥𝑑𝐺𝑡

(𝑘)
− 𝑈(𝑘)T

𝒳𝑡𝑈(−𝑘)T
‖

𝐹

2𝑁

𝑘=1

𝑇

𝑡=𝑆𝑃+𝑆𝑄+1
 

𝑠. 𝑡. 𝑈(𝑘)𝑇
𝑈(𝑘) = 𝐼, 𝑘 = 1,2, ⋯ , 𝑁 (8) 

The optimization problem of Equation (8) is equivalent to the classical 

Orthogonal Procrustes Problem, which has a globally optimal solution: 

𝑈(𝑘) = 𝑈∗(𝑘)𝑉∗(𝑘)T
(9) 

where 𝑈∗(𝑘)  and 𝑉∗(𝑘)  are the left singular value matrix and right singular value 

matrix of ∑ 𝓧𝑡
(𝑘)𝑼(−𝑘)T

𝛥𝐷𝛥𝑑𝑮𝒕
(𝒌)𝑇

𝑇
𝑡=𝑆𝑃+𝑆𝑄+1 , respectively. 

Update𝐸𝑡−𝑖
(𝑘)

, 

The part of Equation (5) with respect to 𝐸(𝑘) is: 

𝑚𝑖𝑛{𝐸(𝒌)} ∑ ∑
1

2
 ‖𝛥𝐷𝛥𝑑𝑮𝒕

(𝒌) − ∑ 𝛼𝑖

𝑝

𝑖=1
𝛥𝐷𝛥𝑑𝑮𝒕−𝒊

(𝒌) + ∑ 𝛽𝑖

𝑞

𝑖=1
𝑬𝒕−𝒊

(𝒌)
𝑁

𝑘=1

𝑇

𝑡=𝑆𝑃+𝑆𝑄+1

− ∑ 𝛾𝑖

𝑃

𝑖=1
𝛥𝐷𝛥𝑑𝑮𝒕−𝑺𝒊

(𝒌) + ∑ 𝜗𝑖

𝑄

𝑖=1
𝑬𝒕−𝑺𝒊

(𝒌)‖
𝐹

2

 

(10) 

Calculating the partial derivatives of Equation (10) and making them zero allows 

us to update the parameters in the same way as Equation (11). 

𝑬𝒕−𝒊
(𝒌)

= −
1

𝛽𝑖
(𝛥𝐷𝛥𝑑𝑮𝒕

(𝒌)
− ∑ 𝛼𝑖

𝑝

𝑖=1
𝛥𝐷𝛥𝑑𝑮𝒕−𝒊

(𝒌) + ∑ 𝛽𝑖

𝑞

𝑖=1
𝑬𝒕−𝒊

(𝒌) − ∑ 𝛾𝑖

𝑃

𝑖=1
𝛥𝐷𝛥𝑑𝑮𝒕−𝑺𝒊

(𝒌)

+ ∑ 𝜗𝑖

𝑄

𝑖=1
𝑬𝒕−𝑺𝒊

(𝒌)) 

(11) 

Update 𝜶, 𝜷, 𝜸, 𝝑, 

For the coefficients 𝛼, 𝛽, 𝛾, 𝜗of the SARIMA model in the objective function (5), 

we estimate them based on the Yule-Walker equation improved by the least squares 

method, which first calculates the self-covariance of the time series, then uses the 

series of self-covariance to construct the Yule-Walker equation and estimates the 

parameters of the model by matrix solving. Specifically, we use the self-covariance 

with lag p as ζ(𝑝),and the seasonal covariance with lag P and seasonal term s as ζ(P ∙

s), then the non-seasonal self-covariance matrix can be expressed as: 

R𝑛𝑜−𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = [

ζ(0)
ζ(1)

ζ(1)
ζ(0)

⋯
⋯

ζ(p − 1)
ζ(p − 2)

⋮ ⋮ ⋱ ⋮
ζ(p − 1) ζ(p − 2) ⋯ ζ(0)

] 

Denote the seasonal self-covariance matrix as: 
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R𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = [

ζ(0)
ζ(s)

ζ(s)
ζ(0)

⋯
⋯

ζ(P ∙ s)
ζ((P − 1) ∙ s)

⋮ ⋮ ⋱ ⋮
ζ((P − 1) ∙ s) ζ((P − 2) ∙ s) ⋯ ζ(0)

] 

We combine the non-seasonal and seasonal self-covariance matrices to obtain the 

total self-covariance matrix: 

R = [
R𝑛𝑜−𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 0

0 R𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
] 

Denote the vector of non-seasonal self-covariances as: 

r𝑛𝑜−𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = [

ζ(1)
ζ(2)

⋮
ζ(p)

] 

The seasonal self-covariance vector is denoted as: 

r𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙 = [

ζ(s)
ζ(2s)

⋮
ζ(P ∙ s)

] 

We merge the non-seasonal and seasonal self-covariance vectors to obtain the 

total self-covariance vector expressed as: 

r = [
r𝑛𝑜−𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙

r𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙
] 

Finally, we solve the improved Yule-Walker equation by the least squares method, 

into the equation shown in Equation (12): 

Φ = R−1𝑟  (12) 

where Φ is a vector containing non-seasonal and seasonal autoregressive parameters. 

5. Experiments 

5.1. Datasets and experimental setup 

We use six real-world datasets to evaluate the performance of TD-SARIMA, and 

the details of the datasets are shown in Table 1. The TaxiBJ dataset is provided by 

Zhang et al. [31], which includes Beijing taxi traffic data for four time periods. The 

whole city of Beijing is divided into a 32 × 32 grid. The NYC-Taxi dataset is provided 

by Yao et al. [32] for the taxi traffic data of New York City from 01/01/2015 to 

02/10/2015. The entire New York City is divided into 10 × 20 grids. The Manhattan-

Taxi dataset is provided by Liu et al. [33] for 09/01/2015–12/31/2015 taxi flow data 

for the Manhattan neighborhood of New York City. We use the taxi outflow data as 

the travel demand number for the area. 
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Table 1. Description of the dataset. 

Dataset TaxiBJ13 TaxiBJ14 TaxiBJ15 TaxiBJ16 NYC-Taxi Manhattan-Taxi 

Location Beijing New York 
Manhattan, 
New York 

Time Span 
7/1/2013–
10/30/2013 

3/1/2014–
6/30/2014 

3/1/2015–
6/30/2015 

11/1/2015–
4/10/2016 

01/01/2015–
02/10/2015 

09/01/2015–
12/31/2015 

Sampling 
interval 

30 minutes 

Gird map size (32, 32) (10, 20) (15, 5) 

Min-Max 
demand 

[0, 1230] [0, 1285] [0, 1267] [0, 1151] [0, 1283] [0, 1688] 

Before the experiments, we performed Z-score normalization on these six 

datasets, by which the Z-score normalization can eliminate the data scale differences 

and reduce the influence of outliers on the model, thus enhancing the robustness of the 

model. In the experiments, the ratio of training, validation, and test sets used for the 

model is 7:1:2. The number of training rounds is 200, and the size of the Tucker 

decomposition core tensor rank is 5. 

5.2. Baselines 

This work compares TD-SARIMA to the following five baselines: 

⚫ HA: Historical Average Method, based on data collected over a period of 

time in the past, calculates the average of these data as a forecast value, 

often used for baseline comparisons. 

⚫ SARIMA: An extended ARIMA model that captures seasonal patterns in 

time series. By introducing a seasonal difference term, SARIMA can 

model time series data with cyclical variations. 

⚫ VAR: A multivariate time series model for the interdependence of multiple 

time series, which is predicted by regressing each time series on its own 

lagged value as well as the lagged values of other time series. 

⚫ SVR: a regression method based on Support Vector Machines for both 

linear and non-linear regression problems. SVR minimizes the prediction 

error by constructing a hyperplane and applies to high-dimensional feature 

spaces. 

⚫ GRU: an improved recurrent neural network unit that solves the gradient 

vanishing problem of traditional RNN by introducing a gate mechanism, 

and is suitable for dealing with sequential data, e.g., traffic flow prediction 

in time series. 

⚫ CNN+GRU: A model that combines CNN and GRU, which uses CNN to 

extract local spatio-temporal features first, and then performs temporal 

dependency modeling by GRU for complex spatio-temporal data 

prediction. 

⚫ ConvGRU: A model that incorporates convolutional operations into GRU, 

combining the advantages of CNN and GRU for processing sequence data 
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with spatio-temporal dependencies. 

⚫ IrConvGRU: a GRU variant for processing irregular spatio-temporal data. 

By irregular convolutional operations, IrConvGRU is able to capture 

complex dependencies in irregular spatio-temporal data more efficiently. 

⚫ DeepST: a deep learning model that consists of two parts: a spatio-

temporal component and a global component. The spatio-temporal 

component uses a convolutional neural network framework to 

simultaneously model spatial near and far dependencies, and temporal 

correlations. The global component is used to capture global factors. 

5.3. Evaluation criteria 

To evaluate the accuracy of the prediction model, this work used two common 

evaluation criteria to measure the error, including mean absolute error (MAE) and root 

mean square error (RMSE). They are defined as shown in Equations (13) and (14). 

𝑀𝐴𝐸 =
1

𝑛
∑|�̂�𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (13) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (14) 

where n is the number of validation data,  �̂�𝑖  denotes the predicted value and 𝑦𝑖 

denotes the true value of travel demand. 

5.4. Results 

Table 2. Comparison of MAE of different models with different data sets. 

Baseline 

Dataset 

TaxiBJ13 TaxiBJ14 TaxiBJ15 TaxiBJ16 NYC-Taxi Manhattan-Taxi 

HA 32.94  34.66  54.09  35.40  20.59  32.43  

SARIMA 20.64  21.77  21.40  18.07  16.79  24.66  

VAR 18.81  21.34  18.10  17.82  16.24  24.47  

SVR 18.66  18.88  18.76  16.84  14.67  24.64  

GRU 18.31  18.28  18.74  16.33  14.76  24.76  

CNN+GRU 17.68  18.61  15.66  16.18  12.27  23.56  

ConvGRU 16.73  15.21  13.89  14.37  9.13  16.88  

IrConvLSTM 12.59  13.38  13.07  11.89  9.62  15.16  

DeepST 11.96  12.71  12.42  11.30  9.14  14.40  

TD-SARIMA 11.91  11.38  11.53  10.86  8.61  13.96  
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In this subsection, the experimental results of TD-SARIMA and the benchmark 

model for taxi travel demand forecasting under different datasets are analyzed and 

discussed as a way to validate the effectiveness of TD-SARIMA in the task of taxi 

travel demand forecasting. The results of the comparative experiments of TD-

SARIMA and the benchmark model are shown in Tables 2 and 3. 

Table 3. Comparison of MAE of different models with different data sets. 

Baseline 
Dataset 

TaxiBJ13 TaxiBJ14 TaxiBJ15 TaxiBJ16 NYC-Taxi Manhattan-Taxi 

HA 42.03  40.55  62.34  42.25  34.47  42.03  

SARIMA 29.61  31.04  31.25  28.05  29.39  44.71  

VAR 28.10  30.46  27.58  27.98  28.47  42.00  

SVR 28.37  28.62  28.54  27.49  26.94  36.44  

GRU 27.42  28.11  26.74  26.56  25.60  34.71  

CNN+GRU 25.32  26.99  24.59  25.32  24.03  32.65  

ConvGRU 23.40  25.10  25.54  24.87  23.76  31.43 

IrConvLSTM 22.88  24.33  23.69  21.01  23.55  27.30  

DeepST 21.74  23.11  22.51  19.96  23.32  25.94  

TD-SARIMA 21.09  22.42  21.83  16.39  22.63  23.80  

The HA model takes the average of historical data as the forecast value by 

assuming that future taxi travel demand is similar to the average of a certain period in 

the past. Taxi travel demand usually exhibits complex nonlinear patterns, such as 

changes in demand during peak and trough periods. The HA model assumes that future 

demand is similar to the historical average and fails to take these nonlinear 

relationships into account, so the HA model has the worst prediction effect in the 

comparison experiments. SARIMA is an extended ARIMA model, and by introducing 

a seasonal difference term, SARIMA is able to predict the demand for the modeling 

of time series data with cyclical variations, and it is able to capture the cyclical features 

in time series. Compared with the HA model, the MAE and RMSE of SARIMA are 

reduced by about 41.30 and 26.40%, respectively. Compared to SARIMA, the VAR 

model can handle multiple correlated time series simultaneously. Therefore, in the task 

of taxi demand forecasting, VAR can incorporate the demand between different 

regions into the modeling scope, that is, VAR is able to capture the spatial correlation 

between the demand for taxi trips in different regions. Compared to the SARIMA 

model, the MAE and RMSE of the VAR model are reduced by 5.31% and 4.88%, 

respectively. 

SVR is a regression method based on Support Vector Machines, which is mainly 

used to solve linear and nonlinear regression problems. SVR minimizes the prediction 

error by finding an optimal hyperplane. GRU is a variant of Recurrent Neural 

Networks, which is able to efficiently solve the problem of gradient vanishing of the 

traditional RNNs by introducing a gate mechanism, so that it can capture data temporal 

dependence in a long time series to capture the temporal dependence of the data. Both 

SVR and GRU have better nonlinear modeling capabilities, but GRU is more suitable 

for dealing with complex time series data, especially when there are long time 
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dependencies or nonlinear dynamic changes in the data. The MAE and RMSE of GRU 

are reduced by 3.45% and 4.12% respectively compared to SVR. 

CNN+GRU is a hybrid model that combines the feature extraction capability of 

CNN with the temporal modeling capability of GRU. ConvGRU is a model that 

integrates convolutional operations directly into GRU. Unlike the separated structure 

of CNN+GRU, ConvGRU introduces convolutional operations directly into the 

structure of GRU, enabling each GRU unit to capture temporal dependencies as well 

as handle spatial features. The state update mechanism of ConvGRU retains the time-

series modeling capability of GRU while capturing spatial dependencies through 

convolutional operations. Compared with CNN+GRU, ConvGRU models both spatial 

and temporal dependencies, and thus the MAE and RMSE of ConvGRU are reduced 

by 17.07% and 3.02%, respectively. 

IrConvLSTM introduces irregular convolution operation, which enables the 

model to capture complex dependencies more efficiently in irregular spatial 

dimensions. DeepST divides taxi travel demand into three types of features in temporal 

order according to the time gap of taxi travel demand, and captures the spatio-temporal 

features of taxi travel demand simultaneously through a multi-channel separated CNN. 

As a result, the MAE and RMSE of DeepST are reduced by 4.99% and 4.33%, 

respectively, compared to IrConvLSTM. 

The proposed TD-SARIMA model compensates for the shortcomings of 

SARIMA, which can only deal with a single time series, by tensorizing the demand 

for taxi trips and then combining the Tucker decomposition with the SARIMA model. 

Meanwhile, by spatio-temporal modeling of the core tensor after Tucker 

decomposition, TD-SARIMA is able to better capture the multimodal structure and 

spatio-temporal correlation within the data, which greatly improves the predictive 

ability of the model. The experimental results show that compared with the benchmark 

model, TD-SARIMA has the highest prediction accuracy, and its MAE and RMSE are 

reduced by about 39.43% and 27.01% on average compared with the benchmark 

model. 

As shown in Figure 2, we conducted a comparative experiment between the 

training time of TD-SARIMA and the benchmark model on each of the six datasets. It 

is very obvious from the figure that the TD-SARIMA model has the fastest training 

speed, even when compared with the VAR, which is the fastest training model in the 

benchmark model, the training speed of TD-SARIMA is four times that of the VAR, 

which is much faster than that of the deep learning-based prediction model. This is 

because deep learning models usually contain a large number of parameters and 

complex network structures, which need to be optimized by backpropagation 

algorithms. The higher the number of parameters, the greater the computational and 

storage requirements, resulting in a longer training process. 
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Figure 2. Comparison of training time overhead for different models with different 

datasets. 

 

Figure 3. Comparison of prediction results of different models under TaxiBJ16 dataset. 

Figures 3 and 4 show the plots of the actual prediction results of the TD-

SARIMA and benchmark models on the TaxiBJ16 and NYC-Taxi datasets. The HA 

model, which is based only on the average of the historical data, is not able to capture 

these real-time variations, which leads to a lack of flexibility and accuracy in the 

prediction results. Especially on the TaxiBJ16 dataset, there is an obvious gap between 

the prediction results of the HA model and the real values, which is due to the fact that 

there are some missing data in the TaxiBJ16 dataset, and the taxi travel demand data 

TaxiBJ13 TaxiBJ14 TaxiBJ15 TaxiBJ16 NYC-Taxi Manhattan-Taxi

VAR 247.31 238.34 243.71 264.53 127.49 215.18

CNN+GRU 653.09 601.04 739.86 851.94 778.35 2327.16

ConvGRU 2606.09 2042.04 2216.86 2970.94 542.35 4083.16

IrConvLSTM 10867.38 8515.29 9244.31 12388.82 2261.59 17026.78

DeepST 25643.88 20093.63 21813.92 29234.05 5336.69 40178.31

TD-SARIMA 61.83 59.59 60.93 66.13 31.87 53.80

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

T
im

e 
 (

S
)



Mathematics and Systems Science 2024, 2(2), 2957.  

13 

is not recorded in the isochronous time slot, which affects the HA model and leads to 

inaccurate prediction results. On the other hand, in the Manhattan-Taxi dataset, the 

taxi travel demand data is recorded with equal time slots, and the HA model is not 

affected by the missing data. The main advantage of the SARIMA model over the HA 

model is its ability to capture seasonal patterns in the time series. Taxi travel demand 

has significant cyclical variations, and thus SARIMA provides better forecasts in the 

short term. Compared to the HA and SARIMA models, GRU performs well in the face 

of complex nonlinearities and dynamic changes. This is because its structure can be 

flexibly adapted to changes in the input data. Therefore, GRU’s forecasting ability is 

superior to that of HA and SARIMA models. 

 
Figure 4. Comparison of prediction results of different models under Manhattan-Taxi dataset. 

The VAR model is capable of modeling multiple time series at the same time, but 

it is not a strength of the VAR model in capturing the spatial dependence of the data, 

and thus the VAR model is unable to take into account the interactions of the demand 

for taxi trips between different regions. The CNN+GRU is a hybrid model combining 

the feature extraction capability of a CNN with the GRU’s time-series modeling 

capability. Local spatio-temporal features in the input data are extracted by CNN. 

CNN can handle data with spatial structure well and capture spatial dependencies in 

the data. GRU are responsible for capturing long and short-term temporal 

dependencies for time-series prediction. ConvGRU directly introduces convolutional 

operations into the structure of GRUs, which makes each GRU unit capable of 

capturing temporal dependencies as well as handling spatial features. ConvGRU’s 

state update mechanism retains the time series modeling capability of the GRU while 

capturing spatial dependencies through convolutional operations. ConvGRU performs 

better than CNN+GRU in the taxi travel demand forecasting task because it is able to 

capture the dependencies in the spatio-temporal data more closely. 

IrConvLSTM is able to adapt to data with irregular spatio-temporal structure, 

such as missing data, non-uniform sampling, etc. through irregular convolutional 
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operations. This makes it more robust in dealing with real-world taxi demand data. 

IrConvLSTM predicts better than ConvGRU because IrConvLSTM is more suitable 

for complex and dynamically changing scenarios in the real world. DeepST selects 

data at different times based on temporal attributes to concatenate them and then uses 

multiple convolutional layers to perform feature extraction in the process. The spatio-

temporal dependence of the data is incorporated into the modeling scope by DeepST. 

Meanwhile, the global component part of DeepST enables it to capture the global 

features of taxi travel demand data. Therefore, DeepST has excellent prediction 

performance.TD-SARIMA model, which combines Tucker decomposition and 

SARIMA model, through the spatio-temporal modeling of the core tensor after Tucker 

decomposition, TD-SARIMA is able to better capture the multimodal structure and 

spatio-temporal correlation within the data, which greatly improves the prediction 

ability of the model. 

6. Conclusions and discussions 

In our experiments, this work selects five real-world datasets for evaluation, 

including data from different cities and different time periods.  These datasets are 

chosen to verify the generalizability and robustness of the TD-SARIMA model.  The 

results show that the TD-SARIMA model achieves excellent prediction accuracy on 

all datasets, which is an outstanding performance compared to traditional benchmark 

models.  Not only that, the TD-SARIMA model also demonstrates robustness under 

various training data sizes, which provides more possibilities for its application in 

different scenarios and data conditions. Future research directions could include 

further improving the model performance, expanding the application areas, and 

exploring in depth the parameter tuning and practical deployment of the TD-SARIMA 

model. In addition, we will consider real-world constraints such as unexpected traffic 

patterns, road construction, or external factors such as weather conditions. This will 

help to better meet the needs of urban traffic management and promote sustainable 

urban development and intelligent transport systems. For larger urban environments, 

increasing the size of the tucker decomposition rank is necessary, which allows the 

core tensor to be more informative. In missing data scenarios, we can first use tensor 

complementation techniques to try to recover the data and then use predictive models 

to make predictions. 
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