A portfolio optimization model under uncertain random environment

Yanrui Su, Yanjiao Song, Chenyi Liu

Article ID: 2859
Vol 2, Issue 1, 2024
DOI: https://doi.org/10.54517/mss.v2i1.2859
Received: 29 May 2024; Accepted: 22 June 2024; Available online: 30 June 2024;
Issue release: 30 June 2024

VIEWS - 702 (Abstract)

Download PDF

Abstract

Uncertain events frequently occur in today’s financial markets. Consequently, the issue of portfolio selection is becoming increasingly significant. This paper thoroughly considers the complexities of stock returns in real-world scenarios and employs uncertain differential equations (UDE), uncertain time series analysis (UTSA), stochastic differential equations (SDE), and random time series analysis (RTSA) to predict stock returns, thereby enhancing the accuracy of these predictions. Furthermore, this paper addresses investors’ preferences and the limitations of using variance as a measure of investment risk. It introduces a risk preference factor and proposes an uncertain random mean-lower variance model. Finally, a genetic algorithm is utilized to solve the model, and numerical simulations are conducted to demonstrate the model’s practicality.


Keywords

uncertain random portfolio; uncertain differential equation; uncertain time series analysis; stochastic differential equation; random time series analysis; genetic algorithm


References

1. Markowitz H. Portfolio selection*. The Journal of Finance. 1952; 7(1): 77-91. doi: 10.1111/j.1540-6261.1952.tb01525.x

2. Jin Y, Zhang W. Robust portfolio optimization with higher moments. Mathematical Finance, 2021, 31(4): 1132-1165.

3. Yang J, Li Y. Stochastic dominance and portfolio optimization. Review of Financial Studies, 2024, 37(1): 50-78.

4. Konno H, Suzuki K ichi. A mean-variance-skewness portfolio optimization model. Journal of the Operations Research Society of Japan. 1995; 38(2): 173-187. doi: 10.15807/jorsj.38.173

5. Huang X. Portfolio selection with a new definition of risk. European Journal of Operational Research. 2008; 186(1): 351-357. doi: 10.1016/j.ejor.2007.01.045

6. Krejić N, Kumaresan M, Rožnjik A. VaR optimal portfolio with transaction costs. Applied Mathematics and Computation. 2011; 218(8): 4626-4637. doi: 10.1016/j.amc.2011.10.047

7. Li B, Shu Y. The skewness for uncertain random variable and application to portfolio selection problem. Journal of Industrial & Management Optimization. 2022; 18(1): 457. doi: 10.3934/jimo.2020163

8. Li J, Liu X. GARCH model with fractional Brownian motion correction. Statistics and Decision, 2021, 1(5): 29-33.

9. Konno H, Shirakawa H, Yamazaki H. A mean-absolute deviation-skewness portfolio optimization model. Annals of Operations Research. 1993; 45(1): 205-220. doi: 10.1007/bf02282050

10. Farrar D. The Investment decision under Uncertainty. Prentice Hall, Englewood Cliffs, New Jersey, 1962.

11. Li X, He L. Higher-order moments and risk management in portfolio optimization. Quantitative Finance, 2023, 23(1): 57-76.

12. Wang Z, Liu Q. Incorporating higher-order moments into portfolio construction under uncertainty. Review of Financial Studies, 2024, 37(3): 987-1020.

13. Zadeh L. Fuzzy sets. Information and Control, 1965, 8(3): 338-353.

14. Deng X, Li R. A portfolio selection model with borrowing constraint based on possibility theory. Applied Soft Computing. 2012; 12(2): 754-758. doi: 10.1016/j.asoc.2011.10.017

15. Pahade JK, Jha M. Credibilistic variance and skewness of trapezoidal fuzzy variable and mean–variance–skewness model for portfolio selection. Results in Applied Mathematics. 2021; 11: 100159. doi: 10.1016/j.rinam.2021.100159

16. Liu B. Uncertainty Theory, 2nd ed Springer-Verlag, Berlin, 2007.

17. Liu B. Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer-Verlag, Berlin, 2010.

18. Yu L, Wang L. Uncertainty Modeling in Portfolio Optimization: A Review. European Journal of Operational Research, 2021, 293(2): 645-659.

19. Cai X, Zhu H. Robust Portfolio Optimization under Uncertainty with Conditional Value-at-Risk. Operations Research Letters, 2022; 50(1): 82-90.

20. Liu S, Zhou X. Dynamic Portfolio Optimization with Uncertainty: A Stochastic Programming Approach. Mathematical Finance, 2023; 33(3): 678-705.

21. Liu Y. Uncertain random variables: a mixture of uncertainty and randomness. Soft Computing. 2012; 17(4): 625-634. doi: 10.1007/s00500-012-0935-0

22. Qin Z. Mean-variance model for portfolio optimization problem in the simultaneous presence of random and uncertain returns. European Journal of Operational Research. 2015; 245(2): 480-488. doi: 10.1016/j.ejor.2015.03.017

23. Mehlawat MK, Gupta P, Khan AZ. Portfolio optimization using higher moments in an uncertain random environment. Information Sciences. 2021; 567: 348-374. doi: 10.1016/j.ins.2021.03.019

24. Treanja, S. LU-Optimality Conditions in Optimization Problems with Mechanical Work Objective Functionals. IEEE Transactions on Neural Networks and Learning Systems, 2021.

25. Holland J. Adaptation in natural and artificial systems. University of Michigan Press, New York, 1975.

26. Kaya O, Schildbach J, Schneider S, Darius R. Robo-advice-a true innovation in asset management, Deutsche Bank Research, 2017.

27. DeMiguel V, Garlappi L, Uppal R. Optimal Versus Naive Diversification: How Inefficient is the 1/NPortfolio Strategy? Review of Financial Studies. 2007; 22(5): 1915-1953. doi: 10.1093/rfs/hhm075

28. Kearney C, Liu S. Textual sentiment in finance: A survey of methods and models. International Review of Financial Analysis. 2014; 33: 171-185. doi: 10.1016/j.irfa.2014.02.006

29. Yao K, Chen X. A numerical method for solving uncertain differential equations. Journal of Intelligent & Fuzzy Systems. 2013; 25(3): 825-832. doi: 10.3233/ifs-120688

30. Liu B. Uncertainty Theory, 4th ed Springer Berlin Heidelberg; 2015. doi: 10.1007/978-3-662-44354-5

31. Ye T, Liu B. Uncertain hypothesis test with application to uncertain regression analysis. Fuzzy Optimization and Decision Making. 2021; 21(2): 157-174. doi: 10.1007/s10700-021-09365-w

32. Phillips PCB, Perron P. Testing for a unit root in time series regression. Biometrika. 1988; 75(2): 335-346. doi: 10.1093/biomet/75.2.335

33. Akhter MF, Hassan D, Abbas S. Predictive ARIMA Model for coronal index solar cyclic data. Astronomy and Computing. 2020; 32: 100403. doi: 10.1016/j.ascom.2020.100403

34. Evans L. An Introduction to Stochastic Differential Equations. 2013. doi: 10.1090/mbk/082

35. Harlow WV, Rao RKS. Asset Pricing in a Generalized Mean-Lower Partial Moment Framework: Theory and Evidence. The Journal of Financial and Quantitative Analysis. 1989; 24(3): 285. doi: 10.2307/2330813

36. Yang X, Liu B. Uncertain time series analysis with imprecise observations. Fuzzy Optimization and Decision Making. 2018; 18(3): 263-278. doi: 10.1007/s10700-018-9298-z

37. Yao K, Liu B. Parameter estimation in uncertain differential equations. Fuzzy Optimization and Decision Making. 2019; 19(1): 1-12. doi: 10.1007/s10700-019-09310-y

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Yanrui Su, Yanjiao Song, Chenyi Liu

License URL: https://creativecommons.org/licenses/by/4.0/