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Abstract: Uncertain events frequently occur in today’s financial markets. Consequently, the 

issue of portfolio selection is becoming increasingly significant. This paper thoroughly 

considers the complexities of stock returns in real-world scenarios and employs uncertain 

differential equations (UDE), uncertain time series analysis (UTSA), stochastic differential 

equations (SDE), and random time series analysis (RTSA) to predict stock returns, thereby 

enhancing the accuracy of these predictions. Furthermore, this paper addresses investors’ 

preferences and the limitations of using variance as a measure of investment risk. It introduces 

a risk preference factor and proposes an uncertain random mean-lower variance model. Finally, 

a genetic algorithm is utilized to solve the model, and numerical simulations are conducted to 

demonstrate the model’s practicality. 

Keywords: uncertain random portfolio; uncertain differential equation; uncertain time series 

analysis; stochastic differential equation; random time series analysis; genetic algorithm 

1. Introduction 

The portfolio problem is concerned with determining the optimal decision among 
various stocks with a view to achieving a proper balance between two conflicting goals: 
return on investment and risk. In 1952, Markowitz [1] introduced the portfolio 
problem, presenting the classic mean-variance model, which laid the foundation for 
various models in modern finance. This model aims to minimize risks while ensuring 
certain returns or maximize returns within a specified risk tolerance. Subsequently, 
numerous scholars have studied portfolio optimization models. Jin and Zhang [2] 
extended the traditional mean variance model, considering the influence of high-order 
moments, and proposed a new method for robust portfolio optimization, which 
provides cutting-edge theoretical support for portfolio optimization. Yang and Li [3] 
combined stochastic dominance theory with portfolio optimization to propose new 
perspectives and methods, enriching the theoretical framework of portfolio 
optimization. Moreover, other researchers have further explored portfolio 
optimization, such as Konno and Suzuki [4], introducing the skewness of asset returns 
and emphasizing the crucial role of the third derivative of the utility function in optimal 
portfolio selection. Huang [5] proposed a new risk model based on the redefined 
concept of portfolio risk. Krejic et al. [6] incorporated fixed costs and impact costs as 
nonlinear functions of trading activities into the optimal portfolio model and studied 
the portfolio optimization problem of VaR risk measurement considering trading costs. 
Li and Shu [7] defined skewness and its calculation formula in uncertain stochastic 
environments and demonstrated the effectiveness and applicability of skewness 
through portfolio selection problems. 

Variance has traditionally served as a fundamental tool for assessing risk in 
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portfolio selection. However, this approach is subject to criticism for penalizing 
deviations from the mean, regardless of whether they are above or below the mean. 
Consequently, with the advancement of portfolio theory, scholars have introduced 
various alternative risk metrics, including Value at Risk (VaR) [6], skewness [7], and 
others. Despite these innovations, the distribution function often exhibits thick-tailed 

phenomena [8–10], where variance alone may fail to comprehensively capture the 

entirety of risk. In response to this challenge, numerous scholars have put forth high-
order moment models [11,12] that incorporate asset returns in portfolio construction. 

Traditional portfolio optimization models are primarily based on probability 
theory. However, the dynamics and complexities of financial markets render this 
approach inadequate for studying portfolio optimization by relying on probability 
theory alone. Consequently, many scholars have turned to fuzzy set theory [13] as a 
means of addressing the portfolio optimization problem. Deng and Li [14] introduced 
a fuzzy portfolio optimization model incorporating loan constraints, assuming asset 
returns as fuzzy numbers. Pahade and Jha [15] proposed a mean-variance-skewness 
model that utilizes trapezoid fuzzy variables to account for skewness. Kwakernaak 
introduced fuzzy-random variables based on fuzzy set theory to tackle mixed stock 
portfolio problems, regardless of historical data availability. 

Subsequently, in 2007, Liu [16] introduced uncertainty theory to better manage 
subjective uncertainty, followed by a revision in 2010 [17]. With the advancement of 
uncertainty theory, research on uncertain portfolios has flourished. Yu and Wang [18] 
reviewed the application of uncertainty modeling in portfolio optimization and 
proposed various cutting-edge modeling methods and theories to help better manage 
and respond to uncertainty in investment decisions. Cai and Zhu [19] explored robust 
portfolio optimization under Conditional Value at Risk (CVaR) and proposed new 
methods to address the impact of uncertainty, particularly in risk management and 
capital allocation. Liu and Zhou [20] studied the uncertainty problem in dynamic 
portfolio optimization using stochastic programming methods, providing advanced 
dynamic optimization techniques suitable for complex market environments. 

In the context of a complex and volatile financial landscape, uncertainty and 
randomness frequently coexist. Liu [21] integrated probability theory and uncertainty 
theory, introducing the concept of uncertain random variables and chance theory. 
Building upon the foundations of chance theory, Qin [22] proposed a mean-variance 
portfolio optimization model within an uncertain random environment. Additionally, 
risk measures for uncertain random variables were defined to gauge risk amidst 
uncertain random returns, leading to the establishment of portfolio optimization 
models tailored to uncertain random returns. Mehlawat et al. [23] conducted a detailed 
investigation into high-order moment portfolio optimization within an uncertain 
random environment. Treanja [24] introduced the optimization problem of interval-
valued Kuhn-Tucker pseudoconvexity (KT pseudoinvix), introduced interval-valued 
curve integration and pseudoconvexity theory, and provided a new method to solve 
optimization problems under uncertainty and randomness. This paper aims to further 
explore uncertain random portfolios based on the groundwork laid by the research of 
aforementioned scholars. 

In this study, a heuristic algorithm, specifically the genetic algorithm, is 
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employed. The genetic algorithm (GA), initially proposed by Holland in 1975 [25], is 
distinguished as a randomized adaptive global search algorithm renowned for its 
formidable search capabilities. It addresses the issue of multiple individuals in the 
population simultaneously, thereby reducing the probability of becoming trapped in 
local optima by evaluating a multitude of solutions within the search space. 

This article combines the unified objective method of GA and multi-objective 
optimization, which has a certain degree of innovation. Traditional multi-objective 
optimization problems involve multiple objective functions and usually require trade-
offs and compromises between these objectives. The model in this article combines 
multiple objective functions into a single objective function, innovatively 
transforming complex multi-objective problems into single objective problems, 
enabling genetic algorithms to be applied to these problems. By optimizing a single 
objective function, the solution space can be explored more intensively, thereby 
improving the global optimality of the final solution. Meanwhile, in the dynamic 
environment of reality, the goals and constraints of the problem may constantly change. 
Our method enables genetic algorithms to quickly adapt to these changes and provide 
effective optimization solutions. 

In assessing risk, the lower difference is employed in lieu of variance. In contrast 
to this, the traditional approach to variance considers all segments of the income 
distribution, encompassing both positive and negative returns. Nevertheless, in 
practical applications, greater concern is often directed towards the risk associated 
with negative returns, given their significant impact on investors. Hence, the concepts 
of lower difference and semi-variance are introduced. 

The investment portfolio optimization model we study aims to allocate stock 
investments reasonably to maximize returns and minimize risks. In the future, these 
models may play important roles in multiple aspects. Firstly, with the widespread 
application of artificial intelligence and big data, models can provide personalized 
investment advice for intelligent investment advisory platforms, automatically 
adjusting investment portfolios based on users’ risk preferences and market conditions 
[26]. Secondly, the model will be able to handle multiple asset classes (such as bonds, 
commodities, real estate, etc.), achieve asset allocation in global markets, and balance 
the risks and returns of different markets [27]. Finally, with the development of 
financial technology, models can combine techniques such as natural language 
processing and sentiment analysis to extract investment signals from unstructured data 
(such as news and social media sentiment) and make more comprehensive investment 
decisions [28]. 

The remainder of this paper is structured as follows: Section 2 presents a review 
of key definitions in uncertainty theory and random theory. Section 3 outlines four 
methodologies for forecasting stock return rates: uncertain differential equations 
(UDE), uncertain time series analysis (UTSA), stochastic differential equations (SDE), 
and random time series analysis (RTSA). Section 4 presents an uncertain stochastic 
stock model that incorporates dual objectives of mean-lower difference to evaluate the 
portfolio along with liquidity constraints and upper and lower limit constraints. Then 
the model is transformed by normalization. Section 5 outlines the development of the 
GA for deriving the optimal solution to the proposed model. Section 6 presents the 
results of numerical simulations that demonstrate the effectiveness of both the 
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proposed model and GA. Finally, conclusions drawn from the findings are presented. 

2. Preliminary 

Uncertain methods are well-suited for addressing complex and highly uncertain 
environments. We can utilize UDE and UTSA to forecast return rates. The stochastic 
approach offers the advantage of capturing the dynamic behavior of the system by 
incorporating random variables, which can more accurately simulate market behavior. 
This approach can be applied across various fields, allowing us to use SDE and RTSA 
to predict return rates. This section introduces some fundamental concepts and 
formulas related to UDE, UTSA, SDE, RTSA, and chance theory. 

2.1. Uncertainty theory 

Uncertainty theory was established by Liu in 2007 and has since been explored 
by numerous researchers. Nowadays, uncertainty theory has evolved into a distinct 
branch of mathematics dedicated to the analysis of uncertain phenomena. This section 
will introduce  -path and inverse uncertainty distribution, which are integral 

components of the broader field of uncertainty theory. 
Definition 1([29]). An uncertain differential equation (UDE), 

𝒅𝑿𝒕 = 𝒇(𝒕, 𝑿𝒕)𝒅𝒕 + 𝒈(𝒕, 𝑿𝒕)𝒅𝑪𝒕  (1)

which is defined to have an   -path 𝑋௧
ఈ  if it solves the corresponding ordinary 

differential equation, 

𝑑𝑋௧
ఈ = 𝑓(𝑡, 𝑋௧

ఈ)𝑑𝑡 + |𝑔(𝑡, 𝑋௧
ఈ)|𝛷ିଵ(𝛼)𝑑𝑡,  (2)

where  1   is the inverse standard normal uncertainty distribution, i.e., 

   1 3
ln , 0,1 .

1

 
 

  


 (3)

Lemma 1([30]). Let tX   and tX    be the solution and   -path of the uncertain 

differential equation respectively. Then, 

   , , ,t t t tdX f t X dt g t X dC   (4)

  
1

0
.t tX XE d    (5)

Lemma 2([30]). It is clear that a Liu process tC
 is a normal uncertain process with 

expected value 0 and variance 2t , i.e., 

 ~ 0, .tC tN
 
 

Furthermore, tC
 has an uncertainty distribution, 

𝛷௧(𝑥) = ൬1 + 𝑒𝑥𝑝 ൬−
𝜋𝑥

√3𝑡
൰൰

ିଵ

. (6)

Lemma 3([30]). For an uncertain variable   with regular uncertainty distribution
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( )x , its expected value can be obtained by, 

    
1 1

0
E d .     (7)

Lemma 4([30]). For an uncertain variable   with regular uncertainty distribution 

( )x  and finite expected value e , its variance can be obtained by, 

    1 21

0
 d .V e      (8)

Lemma 5([31]). Let   be an uncertain variable that follows a normal uncertainty 

distribution ( , )e N  with unknown expected value e  and unknown variance 2 . 

Then the test for the hypotheses 

0 0 0 1 0 0:  and  versus :  or H e e H e e        

at significance level   is 

𝑊 = {(𝑧ଵ, 𝑧ଶ, ⋯ , 𝑧௡): there are more than 𝛼 of indexes 𝑖′s with 

1 ≤ 𝑖 ≤ 𝑛 such that 𝑧௜ < 𝛷଴
-1 ቀ

ఈ

ଶ
ቁ  or 𝑧௜ > 𝛷଴

-1 ቀ1-
ఈ

ଶ
ቁቅ,

 

 

where 1
0
  is the inverse uncertainty distribution of  0 0,e N , i.e., 

𝛷଴
ିଵ(𝛼) = 𝑒଴ +

𝜎଴√3

𝜋
𝑙𝑛

𝛼

1 − 𝛼
. 

Lemma 6([32]). Phillips-Perron test (PP test) addresses the issues of 

heteroscedasticity and serial correlation in the interference term t  of a regression 

model. The three forms of the regression model are as follows: 

𝑝௧ = 𝛽𝑝௧ିଵ + 𝜀௧ . (9)

𝑝௧ = 𝛽𝑝௧ିଵ + 𝜇 + 𝜀௧ . (10)

𝑝௧ = 𝛽𝑝௧ିଵ + ∑ 𝜙௝
∗௣ିଵ

௝ୀଵ 𝛥𝑝௧ି௝ + 𝜇 + 𝛼𝑡 + 𝜀௧ .  (11)

The null hypothesis is 𝐻଴: 𝛽 = 1, and the alternative hypothesis is 𝐻ଵ: 𝛽 < 1. When 
the PP test statistic exceeds the corresponding critical value, the original hypothesis 
that the time series is non-stationary cannot be rejected, indicating the presence of 
unit roots. Conversely, if the PP test statistic is less than or equal to the critical value, 
the time series is deemed stationary and is free of unit roots. 

2.2. Probability theory 

The RTSA analyses historical data to predict future moments. SDE is often used 
to describe certain financial and economic phenomena, such as changes in stock prices. 
This section describes some of the basics of RTSA and SDE.  

Definition 2([33]). If we have a time series 𝑥௧ , then for any lag 𝑘 , the Auto-

Correlation Function (ACF) 𝜌(𝑘) can be expressed as 

𝜌(𝑘) =
஼௢௩(௫೟,௫೟శೖ)

௏௔௥(௫೟)
,  (12)

where 𝐶𝑜𝑣(𝑥௧ , 𝑥௧ା௞) is the covariance of the observations at time t  and time t k  
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and 𝑉𝑎𝑟(𝑥௧) is the variance of the time series 𝑥௧. 

Definition 3([33]). If we have a time series tx , then the Partial Auto-Correlation 

Function (PACF) kk  for any lag k  can be expressed as 

𝜙௞௞ =
𝐸෠ൣ൫𝑥௧ − 𝐸෠𝑥௧൯൫𝑥௧ି௞ − 𝐸෠𝑥௧ି௞൯൧

𝐸෠ ቂ൫𝑥௧ି௞ − 𝐸෠𝑥௧ି௞൯
ଶ

ቃ
, (13)

where 𝐸෠(𝑥௧) denotes expectation, which is the mean, and the expected value of the 

forecast is referred to as 𝐸෠𝑥௧. 
Definition 4([33]). The Akaike information criterion (AIC) is a measure of the 
goodness of fit of a statistical model. It is based on the concept of entropy and can be 
used to assess the complexity of the estimated model and the quality of the data fitted 
by this model. The formula for AIC is as follows: 

𝐴𝐼𝐶 = 2𝑘 − 2 𝑙𝑛(𝐿), (14)

where k  represents the number of parameter estimates in the model and L  denotes 

the maximum likelihood function of the model. 
Definition 5 ([33]). The Bayesian Information Criterion (BIC) is another model 
selection criterion that is very similar to the AIC, but is more stringent when dealing 
with model complexity. The BIC formula is as follows: 

𝐵𝐼𝐶 = 𝑘 𝑙𝑛(𝑛) − 2 𝑙𝑛(𝐿), (15)

where n  is the number of observations, k  is the number of estimated parameters 

in the model, and L  is the maximum log likelihood of the model fit. 

Lemma 7([34]). (𝐼𝑡𝑜ො′𝑠 formula) Suppose that 𝑋(⋅) has a stochastic differential 

𝑑𝑋 = 𝐹𝑑𝑡 + 𝐺𝑑𝑊, (16)

for𝐹 ∈ 𝕃ଵ(0, 𝑇),𝐺 ∈ 𝕃ଶ(0, 𝑇). Assume 𝑢: ℝ × [0, 𝑇] → ℝ is continuous and that 
డ௨

డ௧
, 

డ௨

డ௫
, 

డమ௨

డ௫మ exist and are continuous. Let 

𝑌(𝑡): = 𝑢(𝑋(𝑡), 𝑡). (17)

Then Y  has the stochastic differential 

2
2

2

2
2

2

1

2

1
.

2

u u u
dY dt dX G dt

t x x

u u u u
F G dt GdW

t x x x

  
  
  
    

        

 (18)

The above formula is called ˆ 'Ito s  formula or ˆ 'Ito s  chain rule. 

Lemma 8([33]). The Augmented Dickey-Fuller (ADF) test is a statistical method used 
to determine whether a time series contains a unit root, which indicates non-
stationarity, or if it is stationary. The null hypothesis posits that the series has a unit 
root (i.e., it is non-stationary), while the alternative hypothesis a that the series is 
stationary. The ADF test typically employs an autoregressive model with lagged terms 
to assess the stationarity of the series. 



Mathematics and Systems Science 2024, 2(1), 2859.  

7 

In the case of a no-drift-no-trend term, the ADF test equation is as follows: 

𝛥𝑦௧ = 𝜌𝑦௧ିଵ + ෍ 𝜙௝
∗

௣ିଵ

௝ୀଵ

𝛥𝑦௧ି௝ + 𝑢௧ . (19)

In the case of a with-drift-no-trend, the ADF test is as follows: 

1
*

1
1

 .
p

t t j t j t
j

y y y u  


 


       (20)

In the case of with-drift-with-trend, the ADF test is as follows: 

1
*

1
1

 .
p

t t j t j t
j

y y y t u   


 


        (21)

In Equations (19–20), 
1

1 ( ) 1
p

i
j

  


     , *

1

, 1, 2,... 1
p

j i
i j

j p 
 

     . The 

time series ty   is the independent variable, while    is a constant value. The 

coefficient    measures the trend’s strength, and    represents the serial 

autoregressive coefficient. 
Lemma 9([33]). The Ljung-Box (LB) test evaluates serial autocorrelation in time 

series analysis. The null hypothesis asserts that ty  is a white noise series, while the 

alternative suggests otherwise. The LB statistic is calculated as follows: 

Var(𝜌ො௞) =
𝑛 − 𝑘

𝑛(𝑛 + 2)
, 

𝐿𝐵 = 𝑛(𝑛 + 2) ෍ ቆ
𝜌ො௞

ଶ

𝑛 − 𝑘
ቇ

௠

௞ୀଵ

~𝜒ଶ(𝑚), 
(22)

where n   is the number of samples and 2ˆ
k   is the correlation coefficient at k  th 

order lag; this statistic follows a chi-square distribution with m  degrees of freedom. 

The null hypothesis is rejected at the significance level   if the p-value is less than 

or equal to  , indicating that the series is not a white noise. If the p-value exceeds 

 , the series is considered white noise. 

2.3. Chance theory 

In 2013, Liu introduced uncertain random variables to model complex systems 
characterized by uncertainty and randomness. This section will introduce chance 
measures, uncertain random variables, and chance distributions. 
Definition 2([35]). If the uncertain random variable   has a finite expected value, 

then its average lower deviation is 

𝜎ି
ଶ = 𝐸ൣ൫𝜉 − 𝐸(𝜉)൯

ି
൧, (23)

among which ൫𝜉 − 𝐸(𝜉)൯
ି

= 𝑚𝑎𝑥{ 0, 𝐸(𝜉) − 𝜉}. 

Lemma 10([30]). Assume that 𝜂ଵ, 𝜂ଶ, ⋯ , 𝜂௠ are independent random variables with 

probability distributions 𝛹ଵ, 𝛹ଶ, ⋯ , 𝛹௠ , and let 𝜏ଵ, 𝜏ଶ, ⋯ , 𝜏௡  be independent 
uncertain variables with uncertainty distributions 𝛶ଵ, 𝛶ଶ, ⋯ , 𝛶௡, respectively. If f  is 
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a measurable function, then the uncertain random variable 

𝜉 = 𝑓(𝜂ଵ, 𝜂ଶ, ⋯ , 𝜂௠, 𝜏ଵ, 𝜏ଶ, ⋯ , 𝜏௡) (24)

has a chance distribution 

𝛷(𝑥) = න 𝐹
ℜ೘

(𝑥; 𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௠)𝑑𝛹ଵ(𝑦ଵ)𝑑𝛹ଶ(𝑦ଶ) ⋯ 𝑑𝛹௠(𝑦௠), (25)

where 

𝐹(𝑥; 𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௠) = ℳ{𝑓(𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௠, 𝜏ଵ, 𝜏ଶ, ⋯ , 𝜏௡) ≤ 𝑥} (26)

is the uncertainty distribution of 𝑓(𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௠, 𝜏ଵ, 𝜏ଶ, ⋯ , 𝜏௡) for any real numbers 

𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௠, and is determined by 𝛶ଵ, 𝛶ଶ, ⋯ , 𝛶௡. 

3. Forecast stock return rates 

In light of the available historical data related to stocks, this section outlines four 
methods for predicting stock returns: UDE, UTSA, SDE, and RTSA. 

3.1. UDE predicts stock return rates 

Assuming that the price of a stock at time t  is tX , the stock price is predicted 

by the geometric Liu process as follows: 

𝑑𝑋௧ = 𝑒𝑋௧𝑑𝑡 + 𝜎𝑋௧𝑑𝐶௧. (27)

The analytic solution of Equation (27) is 

𝑋௧ = 𝑋଴ 𝑒𝑥𝑝(𝑒𝑡 + 𝜎𝐶௧). (28)

Equation (27) has an  -path tX   as follows: 

𝑋௧
ఈ = 𝑋଴ 𝑒𝑥𝑝(𝑒𝑡 + 𝜎𝛷ିଵ(𝛼)𝑡), (29)

where (0,1)   , e   and    are the log-drift and log-diffusion, respectively, 

 1   is the inverse standard normal uncertainty distribution, and 

𝛷ିଵ(𝛼) =
√3

𝜋
𝑙𝑛 ቀ

𝛼

1 − 𝛼
ቁ. (30)

According to Lemma 1, the expected price of stock is 

𝐸෨[𝑋௧] = න 𝑋௧
ఈ

ଵ

଴

𝑑𝛼. (31)

Let ( )t  represent the return rates at a future moment t , the simple return rates 

at moment t  can be expressed as 

𝛿(𝑡) =
𝑋௧ − 𝑋௧ିଵ

𝑋௧ିଵ
, (32)

The expected return rates on the stock at time t  can be obtained from Equations 

(31) and (32) as 
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

  
  

1
1

0
1

1
1 1 1

10
2 2

[ ( )]

exp
1 .

exp ( 1) ( 1)

t t

t

X X
t d

X

e t t
d

e t t

E
 

 

 


 












  
  
     




 (33)

In Equation (33), 𝑒ଵ and 𝜎ଵ are the parameters at time 𝑡, while 𝑒ଶ and 𝜎ଶ are 

the parameters at time 𝑡 − 1. 
Based on the definition of the Liu process, the term 

𝐶௧೔శభ
− 𝐶௧೔

𝑡௜ାଵ − 𝑡௜
~𝒩(0,1). (34)

Furthermore, tX  obeys a log-normal uncertain distribution as follows: 

 0ln ~ ln , .tX X et tN  (35)

Thus, the sample data constructed by variables e  and   should adhere to the 

standard normal distribution of uncertainty as follows: 

 
   1 1

1

~ 0,1 .i i i

i

t t t i i

t i i

X X eX t t

X t t
 



  


N  (36)

Assume that there are n  stock price observations 𝑥௧భ
, 𝑥௧మ

, ⋯ , 𝑥௧೙
 at time 

𝑡ଵ, 𝑡ଶ, ⋯ , 𝑡௡  with 𝑡ଵ < 𝑡ଶ < ⋯ < 𝑡௡ , respectively. By substituting 𝑋௧೔
 and 𝑋௧೔శభ

 

with the observations 𝑥௧೔
 and 𝑥௧೔శభ

, respectively, we can express the equation as 

ℎ௜(𝑒, 𝜎) =
𝑥௧೔శభ

− 𝑥௧೔
− 𝑒𝑥௧೔

(𝑡௜ାଵ − 𝑡௜)

𝜎𝑥௧೔
(𝑡௜ାଵ − 𝑡௜)

, 𝑖 = 1,2, ⋯ , 𝑛 − 1, (37)

which are real functions of the parameters 𝑒 and 𝜎. The estimates of 𝑒 and 𝜎 

are denoted by 𝑒∗ and 𝜎∗, respectively. Using the method of moments [33], we can 
get the system of equations: 

⎩
⎪
⎨

⎪
⎧ 1

𝑛 − 1
෍ ℎ௜

௡ିଵ

௜ୀଵ

(𝑒∗, 𝜎∗) = 0，

1

𝑛 − 1
෍൫ℎ௜(𝑒∗, 𝜎∗)൯

ଶ
௡ିଵ

௜ୀଵ

= 1.

 (38)

The solution to the system of Equation (38) is 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑒∗ =
1

𝑛 − 1
෍

𝑥௧೔శభ
− 𝑥௧೔

𝑥௧೔
(𝑡௜ାଵ − 𝑡௜)

，

௡ିଵ

௜ୀଵ

𝜎∗ = ඩ
1

𝑛 − 1
෍ ቆ

𝑥௧೔శభ
− 𝑥௧೔

𝑥௧೔
(𝑡௜ାଵ − 𝑡௜)

ቇ

ଶ௡ିଵ

௜ୀଵ

− ൭
1

𝑛 − 1
෍

𝑥௧೔శభ
− 𝑥௧೔

𝑥௧೔
(𝑡௜ାଵ − 𝑡௜)

௡ିଵ

௜ୀଵ

൱

ଶ

.

 (39)

Using the definition of residuals, we generate 𝑛 − 1 residuals 𝜀ଶ, 𝜀ଷ, ⋯ , 𝜀௡ of 
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the Equation (29) corresponding to the observed data. In order to ascertain whether 
the Equation (29) fits the observed data of stock price, it is necessary to test whether 

the linear uncertainty distribution  0,1L  fits the 1n  residuals 2 3, , , n   , i.e., 

2 3, , , ~ (0,1).n   L  

Given a significance level  , it follows the test is 

  2 3, , , :  there are more than  of indexes 's with

2  such that  or 1- .
2 2

n

i i

W z z z i

i n z z



 



    



 (40)

If the vector of the 1n  residuals 2 3, , , n    belongs to the test W, i.e., 

 2 3, , , ,n W     

then the Equation (29) is not a good fit to the observed data of stock price. If 

 2 3, , , ,n W     

then the Equation (29) is a good fit to the observed data of stock price. 

3.2. UTSA predicts stock return rates 

An uncertain time series is a sequence of imprecisely observed values, each of 
which is characterized by an uncertain variable. Mathematically, an uncertain time 
series is represented by 

𝑋 = {𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋௡}, 

where tX  are imprecisely observed values (uncertain variables) at time t . A basic 

problem of UTSA is to predict the value of 1nX    based on previously observed 

values 𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋௡. 
In order to model the time series, Yang and Liu [36] suggested an uncertain 

autoregressive model, 

𝑋௧ = 𝑎଴ + ෍ 𝑎௜

௞

௜ୀଵ

𝑋௧ି௜ + 𝜀௧ , (41)

where 0 1, , , ka a a   are unknown parameters, k   is called the order of the 

autoregressive model, and t  is a disturbance term. 

The least squares estimate of 0 1, , , ka a a  in the autoregressive model (41) is 

the solution of the minimization problem 

𝑚𝑖𝑛
௔బ,௔భ,…,௔ೖ

෍ 𝐸෨

௡

௧ୀ௞ାଵ

൦ቌ𝑋௧ − 𝑎଴ − ෍ 𝑎௜

௞

௜ୀଵ

𝑋௧ି௜ቍ

ଶ

൪. (42)

Denoting the optimal solution by * * *
0 1, , , ka a a , the fitted autoregressive model 

is determined by 
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𝑋௧ = 𝑎଴
∗ + ෍ 𝑎௜

∗

௞

௜ୀଵ

𝑋௧ି௜ . (43)

Then, for each index  1, 2, ,t t k k n    , the t th residual is 

𝜀௧ = 𝑋௧ − 𝑎଴
∗ − ෍ 𝑎௜

∗

௞

௜ୀଵ

𝑋௧ି௜ (44)

Hence, a suitable approach to estimate the expected value of disturbance term is 
the average of expected values of residuals, i.e., 

�̂�: =
1

𝑛 − 𝑘
෍ 𝐸෨

௡

௧ୀ௞ାଵ

[𝜀௧], (45)

and the variance of the disturbance term can be estimated by 

𝜎ොଶ: =
1

𝑛 − 𝑘
෍ 𝐸෨

௡

௧ୀ௞ାଵ

[(𝜀௧ − �̂�)ଶ], (46)

where t̂  are the t th residuals, 1, 2, ,t k k n    , respectively. 

Based on the time series 𝑋ଵ, 𝑋ଶ, ⋯ , 𝑋௡ , it can infer that the uncertain 
autoregressive model is 

𝑋௧ = 𝑎଴
∗ + ෍ 𝑎௜

∗

௞

௜ୀଵ

𝑋௧ି௜ + 𝒩(�̂�, 𝜎ො). (47)

In order to test whether the UTSA model fits the observed data, we need to 
evaluate whether the normal uncertainty distribution ˆ ˆ( , )e N  corresponds to the 

n k  residuals 1 2, , ,k k n      determined by Equation (44), i.e., 

𝜀௞ାଵ, 𝜀௞ାଶ, ⋯ , 𝜀௡~𝒩(�̂�, 𝜎ො). (48)

Given a significance level  , it follows from Lemma 5 that the test is 

𝑊 = {(𝑧௞ାଵ, 𝑧௞ାଶ, ⋯ , 𝑧௡): there are more than 𝛼 of indexes 𝑡's with 

𝑘 + 1 ≤ 𝑡 ≤ 𝑛 such that 𝑧௧ < 𝛷-1 ቀ
𝛼

2
ቁ  or 𝑧௧ > 𝛷-1 ቀ1-

𝛼

2
ቁቅ 

where 

𝛷ିଵ(𝛼) = �̂� +
𝜎ො√3

𝜋
𝑙𝑛

𝛼

1 − 𝛼
. (49)

If the vector of the n k  residuals 1 2, , ,k k n      belongs to W, i.e., 

(𝜀௞ାଵ, 𝜀௞ାଶ, ⋯ , 𝜀௡) ∈ 𝑊, 
then reject the null hypothesis that means the model is not a good fit to the 

observed data. If 
(𝜀௞ାଵ, 𝜀௞ାଶ, . . . , 𝜀௡) ∉ 𝑊, 

then accept the null hypothesis that means the model is a good fit to the observed 
data. 
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The forecast’s uncertain variable 1nX   follows a normal uncertainty distribution 

𝒩(�̂�, 𝜎ො), i.e., 

𝛹(𝑧) = ቆ1 + 𝑒𝑥𝑝 ቆ
𝜋(�̂� − 𝑧)

√3𝜎ො
ቇቇ

ିଵ

. (50)

Taking   as the confidence level, it is easy to verify that the minimum interval 

[𝑎, 𝑏] with 𝛹෡(𝑏) − 𝛹෡(𝑎) ≥ 𝛼 is 

ቈ�̂� −
𝜎ො√3

𝜋
𝑙𝑛

1 + 𝛼

1 − 𝛼
, �̂� +

𝜎ො√3

𝜋
𝑙𝑛

1 + 𝛼

1 − 𝛼
቉. 

Since      1
ˆ ˆ ˆ

na X b b a      M , the   confidence interval of 

1nX   is 

ˆ 3 1
ˆ ln .

1

 
 





 

3.3. SDE predict stock return rates 

Let tS  denote the price of a stock at time t , the following SDE can be obtained 

from the Black-Scholes model: 

𝑑𝑆௧ = 𝜇𝑆௧𝑑𝑡 + 𝜎𝑆௧𝑑𝑊௧ , (51)

where   and   represent the drift and volatility of a stock, respectively, and tW  

represents the Standard Brownian Motion. 

Given the initial price 0S  of a stock at time 0t  , according to ˆ 'Ito s  formula, 

Equation (51) can be written in the following form, as follows: 

𝑑𝑆௧

𝑆௧
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊௧ , (52)

the solution of Equation (51) can be obtained as follows: 

𝑆௧ = 𝑆଴ 𝑒𝑥𝑝 ൭ቆ𝜇 −
𝜎ଶ

2
ቇ 𝑡 + 𝜎𝑊௧൱. (53)

Since Equation (51) implies 

𝑆௧ = 𝑆଴ + න 𝜇
௧

଴

𝑆௧𝑑𝑠 + න 𝜎
௧

଴

𝑆௧𝑑𝑊௧ (54)

and 𝐸෠ ቀ∫ 𝜎
௧

଴
𝑆௧𝑑𝑊௧ቁ = 0, we have, 

𝐸෠(𝑆௧) = 𝑆଴ 𝑒𝑥𝑝( 𝜇𝑡). (55)

The simple return rates on the stock at time t  is 

𝜉(𝑡) =
𝑆௧ − 𝑆௧ିଵ

𝑆௧ିଵ
, (56)

and according to Equation (55), the expected return rates at time t  is 
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  


 

1

1

1

2

( ) ( )
( )

( )

exp( )
1.

exp ( 1)

t t
t

t

E E
E

S S

S

t

E

t













 


 (57)

In Equation (57), 1  is the parameter at t , while 2  is the parameter at 1t  . 

To predict the price of a stock at time t , it is necessary to estimate the two 

unknown parameters   and   in Equation (53). Since 

𝑙𝑛 𝑆௧ ~𝒩 ቆ𝑙𝑛 𝑆଴ + ቆ𝜇 −
𝜎ଶ

2
ቇ 𝑡, 𝜎ଶ𝑡ቇ, (58)

it is easy to obtain the probability density function of tS : 

𝑓(𝑆௧; 𝜇, 𝜎) =
1

𝑆௧𝜎√2𝜋𝑡
𝑒𝑥𝑝

⎣
⎢
⎢
⎢
⎡

−
൤𝑙𝑛 ቀ

𝑆௧
𝑆଴

ቁ − ൬𝜇 −
𝜎ଶ

2
൰ 𝑡൨

ଶ

2𝜎ଶ𝑡

⎦
⎥
⎥
⎥
⎤

. (59)

The probability density function of tS  can be used to obtain the likelihood 

function 

𝐿(𝑆௧; 𝜇, 𝜎ଶ) = ෑ
1

𝑆௧𝜎√2𝜋𝑡

௡

௧ୀ଴

𝑒𝑥𝑝

⎣
⎢
⎢
⎢
⎡

−
൤𝑙𝑛 ቀ

𝑆௧
𝑆଴

ቁ − ൬𝜇 −
𝜎ଶ

2
൰ 𝑡൨

ଶ

2𝜎ଶ𝑡

⎦
⎥
⎥
⎥
⎤

, (60)

and the maximum likelihood estimation method can be used to obtain the 

estimated values 𝜇∗ and 𝜎∗, respectively. 

To ensure the accuracy of the predicted stock return rates 𝑆௧ at 𝑡, it is essential 

to conduct hypothesis testing on the estimated parameter values 𝜇∗ and 𝜎∗. In this 

section, only the hypothesis testing steps for the obtained parameter value *  are 

provided. Similarly, the parameter value *  can be obtained. 

The null hypothesis, denoted by 0H , and alternative hypothesis, denoted by 1H , 

should be presented as follows: 

𝐻଴: 𝜇 = 𝜇∗， VS 𝐻ଵ: 𝜇 ≠ 𝜇∗. 

Construct a test statistic Z  that follows a standard normal distribution and 

assume that the original hypothesis is true, then 

𝑍 =

𝑙𝑛 𝑆௧ − ൭𝑙𝑛 𝑆଴ + ቆ𝜇∗ −
𝜎∗మ

2
𝑡ቇ൱

𝜎∗√𝑡
~𝒩(0,1). 

(61)

Given the significance level  , the following equation can be obtained: 

𝑃 ൬|𝑍| ≥ 𝑍ఈ
ଶ

൰ = 𝛼, (62)
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where 
2

Z  represents the 
2


 supremum of Z , and the rejection domain can be 

further determined as 

|𝑍| ≥ 𝑍ఈ
ଶ

. (63)

Bring historical stock return rate data into formula (61) to obtain the specific 

value of Z . In the event that the value falls within the rejection domain, the original 
null hypothesis must be rejected; otherwise, it must be accepted. Only when the 
historical data of a certain stock passes hypothesis testing can this method be employed 
to predict its future return rates. 

3.4. RTSA predict stock return rates 

The ARIMA model is a statistical model for time series analysis and forecasting. 
It is based on the assumption that there exists a linear relationship between the current 
observations and the past observations, which can be used to describe the 

autocorrelation of the time series data, denoted as AR (𝑝). The MA model treats a 
time series as a past noise of a number of periods as a weighted average. The current 
observation is obtained from the past white noise through a specific linear combination, 

denoted as MA (𝑞). The ARMA (𝑝, 𝑞) model is a combination of AR (𝑝) and MA 

(𝑞) with the order denoting the order of the AR and MA parts, respectively. The 

ARIMA (𝑝, 𝑑, 𝑞)  model introduces a difference operation on the basis of 

ARMA (𝑝, 𝑞), which is used to handle non-stationary time series (seasonality). The 
difference operation enables the ARIMA model to transform a non-stationary time 
series into a stationary time series, which can then be modeled using the ARMA model. 
The mathematical formulation is as follows: 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑌௧ = 𝑑 + ෍ 𝜙௜

௣

௜ୀଵ

𝑌௧ି௜ + 𝜀௧ − ෍ 𝜃௝

௤

௝ୀଵ

𝜀௧ି௝ ,

𝜙௣ ≠ 0, 𝜃௤ ≠ 0,

𝐸෠(𝜀௧) = 0, 𝑉𝑎𝑟(𝜀௧) = 𝜎ఌ
ଶ, 𝐸෠(𝜀௧𝜀௦) = 0, ∀𝑠 ≠ 𝑡,

𝐸෠(𝑥௦𝜀௧) = 0, 𝑠 < 𝑡,

 (64)

where tY   is the return rates at time t  , t   represents white noise at time t  , 

1 2, , , , p     are AR coefficients, and 1 2, , , q    are MA coefficients. 

The following outlines the steps involved in the construction of an ARIMA model 
[33]: 

Firstly, the ADF test is conducted in accordance with Lemma 8, with the 
objective of determining the degree of smoothness exhibited by the data. In the event 
that the data is found to be non-stationary, a differencing operation is then performed 
on it until the resulting differenced data is deemed to be smooth. In the case of 

economic time series, the number of differences, d , is typically limited to 0, 1, or 2. 

Subsequently, the white noise test is conducted in accordance with the 
stipulations of Lemma 9. In the event that the sequence is identified as a non-white 
noise sequence, it is then ready for subsequent prediction. 

The ACF and PACF are computed for smooth non-white noise sequences in order 



Mathematics and Systems Science 2024, 2(1), 2859.  

15 

to identify the ARMA model, as demonstrated in Table 1. After the smoothing process, 
the partial autocorrelation function is truncated while the autocorrelation function is 
trailing, thereby enabling the construction of an AR model. Conversely, if the partial 
autocorrelation function is trailing while the autocorrelation function is truncated, an 
MA model can be built. Finally, if both the partial autocorrelation function and the 
autocorrelation function are trailing, the sequence is suitable for the ARIMA model. 
The BIC criterion can be employed to order the model and determine the p  and q  

parameters, thereby enabling the identification of the optimal model. 
Then, the identified model must be tested to ascertain whether its residual 

sequence is white noise. If it is not white noise, it indicates that there is still useful 
information in the residuals, which must be modified in the model or further extracted. 
Once the models have been identified, the parameters of each model are determined. 
Finally, the following formula is applied to predict the results. 

𝐸෠[𝑌௧] = 𝑑 + ෍ 𝜙௜

௣

௜ୀଵ

𝑌௧ି௜. (65)

Table 1. Model ordering. 

Model ACF PACF 

AR ( )p  tail off p-order cut-off 

MA ( )q  q-order cut-off tail off 

ARMA ( , )p q  tail off cut-off 1 

4. Uncertain random portfolio model 

In the considering of n  stocks, let 1n  represent the number of stock prices that 

satisfy the UDE, 2n  denote the stock return rates that satisfy the UTSA, 3n  indicate 

the stock prices that satisfy the SDE, and 4n  signify the stock return rates that satisfy 

the RTSA. It follows that 1 2 3 4n n n n n    . Simulate the dynamics of stock return 

rates with UTSA, RTSA. The UDE and SDE simulate the stock price and, 
consequently, the stock return rates. For sake of argument, let’s assume that the return 
rates on all stocks are independent. To facilitate the narration, the following symbols 
are introduced as shown in Table 2. 

Table 2. Symbol specification. 

Symbol Symbol specification 

𝑥௜ The investment proportion of i th stock with UDE 

𝑦௜ The investment proportion of j th stock with UTSA 

𝑝௞ The investment proportion of k th stock with SDE 

𝑞௠ The investment proportion of m th stock with RTSA 

𝛿௜ The return rates of i th stock with UDE 
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Table 2. (Continued). 

Symbol Symbol specification 

𝜁௝ The return rates of j th stock with UTSA 

𝜉௞ The return rates of k th stock with SDE 

𝜂௠ The return rates of m th stock with RTSA 

ℎ The investor’s target return rates 

𝑅 The total return rates on the portfolio 

𝑉ି Lower variance of the portfolio 

𝑎 Lower turnover rate 

𝑏 An investor’s maximum risk tolerance 

𝑐 Maximum investment proportion for each stock 

For the sake of expression, we have 

   
   
   
   

1 1

2 2

3 3

4 4

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

, , , , , ,

, , , , , , ,

,

,

, , , , , , ,

,

,

, , , , , , , .

T T

n n

T T

n n

T T

n n

T T

n n

x x x

y y y

p p p

q q q

  

  

  

  

 

 

 

 

x δ

y ζ

p ξ

q η

 

 

 

 

 

Obviously, Tx δ , Ty ζ , Tp ξ  and Tq η  are portfolio return rates satisfying 

UDE, UTSA, SDE, and RTSA, respectively. Then the expected total return rate is 

      
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 (66)

where 

𝜟 = ൫𝐸෨[𝛿ଵ], 𝐸෨[𝛿ଶ], ⋯ , 𝐸෨ൣ𝛿௡భ
൧൯

்
, 𝒁 = ൫𝐸෨[𝜁ଵ], 𝐸෨[𝜁ଶ], ⋯ , 𝐸෨ൣ𝜁௡మ

൧൯
்

, 

𝜩 = ൫𝐸෠[𝜉ଵ], 𝐸෠[𝜉ଶ], ⋯ , 𝐸෠ൣ𝜉௡య
൧൯

்
, 𝑵 = ൫𝐸෠[𝜂ଵ], 𝐸෠[𝜂ଶ], ⋯ , 𝐸෠ൣ𝜂௡ర

൧൯
்

. 

Several drawbacks exist in utilizing variance as a measure of investment risk. 
Firstly, risk is quantified by the variance of the anticipated portfolio return rates, 
encompassing return rates exceeding the target rates as risk. However, investors 
typically view higher return rates positively, rendering this inclusion unnecessary. 
Secondly, the reliance on variance to gauge risk presupposes a normal distribution for 
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the probability distribution of stock return rates, which is unrealistic in actual stock 
markets. In addition, another assumption that underlies the use of variance to evaluate 
risk is that investors are risk-averse and possess ample information. However, K.J. 
Arrow and J.W. Pratt have shown that risk aversion does not universally represent risk 
preferences [36,37]. 

In view of the aforementioned limitations of employing variance as a risk 
measurement tool, this paper adopts the lower variance to measure risk, which can 
better symbolize an investor’s intuitive feeling of risk and definition of risk. For an 

uncertain random variable X , define the lower variance X   as follows: 

, 0

0, 0.

X X
X

X
 
  

，
 (67)

Considering the case of R h , the lower variance of portfolio can be expressed 

as 

    
2 1 21

0
,V E R h h d           (68)

where   is the chance distribution of R , and we have 

           
31 2 4

1 1 1 1

.
nn n n

i i j j k k m m
i j k m

E Ex t y t p E t q E t   
   

                     (69)

In Equation (69),   iE t   ,   jE t   ,   kE t   , and   mE t    

indicate that the return rates satisfy the expected value of UDE, UTSA, SDE, and 
RTSA, respectively. According to Equations (33), (43), (57), and (65) the following 
equations can be obtained, respectively. 
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 (70)

In order to align the model more closely with the actual dynamics of the stock 
market, we incorporate liquidity constraints, upper and lower limit constraints, 
expected return rate constraints, and risk constraints into this uncertain random mean-
lower variance model. The liquidity risk associated with stocks pertains to the potential 
inability to trade them in a timely and cost-effective manner due to inadequate market 
liquidity. In general, a higher level of liquidity is associated with a lower level of 
relative risk. Therefore, the liquidity of the stock represents a primary indicator of 
interest to indicators in the context of actual investment. In this paper, stock liquidity 
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is described by turnover rate, which refers to the frequency of stock turnover in the 
market within a certain period of time. This is one of the indicators reflecting the 
strength of stock liquidity, which can be expressed by the following formula: 

31 2 4

1 1 1 1

,
nn n n

i i j j k k m m
i j k m

x y p q a   
   

        (71)

where i , k  denote the turnover rate of the i th, k th, stock whose price meets 

UDE, SDE, respectively and j  , m   denote the turnover rate of the j  th, m  th 

stock whose return rates meet UTSA, RTSA, respectively. 
The upper and lower limits mean that the proportion of investment made by an 

investor in any stock can neither be negative nor exceed c , which can be expressed 

as 
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 (72)

where c  is the maximum value of the investor’s proportion of investment in each 

stock. 
The objective of investors is to obtain higher investment return rates while 

bearing lower investment risks. This can be expressed as the following equation: 

max R E      
T T T Tx δ y ζ p ξ q η  (73)

 
2

min V E R h
      (74)

Additionally, it should be noted that different investors have varying degrees of 
acceptance of investment risks. Consequently, a risk preference factor   is introduced. 

In accordance with Equations (66)–(72) and the objective functions (73) and (74). 
Model (75) can be incorporated into the following equation: 
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 (75)

In problem (75), maxR  denotes the maximum portfolio return rates when 

investment risk is not considered, and minV   denotes the minimum portfolio risk when 

portfolio return rates are not considered. The risk preference factor, denoted by  , is 

a key in this context. The greater the value of  , the greater the weight of the variance 

after normalization of problem (75), which may be interpreted as indicating a greater 
risk aversion on the part of the investor. 

In order to solve problem (75), the values of maxR  and minV   need to be obtained 

under the same constraints as in problem (75). Therefore, this paper puts forth two 

sub-models, with R  and V   serving as objective functions, respectively. The sub-

models are formulated as follows:  
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 (76)

and 
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 (77)

5. Problem solving 

GA is an optimization method inspired by biological evolution and is typically 
employed to address complex optimization problems [25]. The algorithm simulates 
the genetic and evolutionary processes observed in nature, with the objective of 
identifying the optimal or near-optimal solution to a given problem. This is achieved 
by simulating the natural selection mechanism, in which the fittest survive and 
reproduce. 

The five principal elements involved in the GA are as follows: parameter coding, 
setting of the initial population, design of the fitness function, design of genetic 
operation, and setting of the control parameters. The operation process of the GA is 
characterized by a typical iterative process, comprising the following essential 
elements and basic steps: 

The GA typically employs a binary coding method, whereby the decision 
variables are represented as binary strings. The length of the binary coding string, 

denoted by L , is dependent on the required precision. The binary coding strings for 
each decision variable are then concatenated to form a chromosome. The range of 

intervals is represented by the closed interval [ , ]r lH H , the length of the encoding is 

denoted by  , and the current string 1 2i LO s s s   corresponds to the decimal iH . 

The integer part of the encoding represents the quotient when dividing by two, while 
the fractional part represents the product when multiplying by two. The precision of 
this representation is denoted by Equation (78). The corresponding decoding equation 
is presented in Equation (79). 

.
2 1

r l
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H H 
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
 (78)
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.
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  

  (79)

Following the initialization of the population or subsequent perturbations, it is 
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necessary to assess the adaptation of individuals. The assessment of adaptation is 
based on the objective function pursued. In this context, it is possible to consider the 
objective function to be solved as its hardness function. In the event that the objective 
function is a maximum problem, then 

𝐹(𝑂௜) = 𝑓(𝑋௜). (80)

Conversely, in the event that the objective function is a minimization problem, 
then 

𝐹(𝑂௜) = 𝑊 − 𝑓(𝑋௜), (81)

where W  is a constant we introduced to satisfy the non-negative value of the fitness 

function. 
The evaluation function corresponding to each chromosome is then defined as 

the ratio of the fitness of a particular chromosome to the sum of the fitness values of 

all chromosomes. The evaluation function of an individual iO ,  iEval O , is shown 

in Equation (82). 

𝐸𝑣𝑎𝑙(𝑂௜) =
𝐹(𝑂௜)

∑ 𝐹ே
௜ୀଵ (𝑂௜)

. (82)

Subsequently, the selection operation is performed using the roulette wheel 
method. This entails that the probability of each individual entering the next generation 
is equal to the ratio of its fitness value to the sum of the fitness values of the individuals 
in the entire population. The formula is presented in Equation (83). A random variable 

𝑟  is generated in the interval [0,1], and the individual variable 𝑂௞  is selected if 

𝑃௞ିଵ < 𝑟 ≤ 𝑃௞. 
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k k
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




 

(83)

In the above process, two parent individuals, designated as 𝑂ଵ  and 𝑂ଶ , are 
selected from the current population. The crossover point is then set at a specific 

position, designated as 𝑀ଵ, at which two offspring individuals, designated as 𝑂ଵ
′  and 

𝑂ଶ
′ , can be generated. The following equation can be used to calculate the values of 

𝑂ଵ
′  and 𝑂ଶ

′ : 

   
   

'
1 1 1 2 1

'
2 2 1 1 1

1: : ,

1: : ,

O O M O M

O O M O M

 

 
 

where 𝑂ଵ[1: 𝑀ଵ] represents the gene segment of the parent 𝑂ଵ before the crossover 

point, while 𝑂ଶ[𝑀ଵ: ]  represents the gene segment of the parent 𝑂ଶ  after the 
crossover point. 

The individual 𝑂௜ to be mutated can be determined by roulette selection. Once a 

specific mutation site 𝑀ଶ  has been selected, the mutated individual 𝑂௜
"  can be 

generated by 

𝑂௜
"= 𝑂௜. 

The mutation operation of the gene at the specified point is then performed, for 
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example, by setting 𝑂௜
"[𝑀ଶ] = 𝐺. The new gene value 𝐺 can be either a randomly 

chosen one or one generated according to a specific rule. 
The complete algorithmic process is illustrated in Algorithm 1. 

Algorithm 1 Solution Algorithms for Optimization 

1：Step 1. Encoding. 

2：Step 2. Generate random initialization of N  chromosomes. 

3：Step 3. Calculate target values for all chromosomes. 

4：Step 4. Calculate the fitness of each chromosome based on the target value. 

5：Step 5. Selection of chromosomes by means of roulette. 

6：Step 6. Update chromosomes with crossover algorithms. 

7：Step 7. Update chromosomes with mutation algorithms. 

8：Step 8. Repeat steps 3 to 7 until the termination condition is satisfied. 

9：Step 9. Output the best chromosome as the optimal solution. 

6. Numerical simulation 

In this section, a numerical simulation is designed to predict daily stock return 
rates and the optimal portfolio. In order to illustrate the models proposed in this paper, 
we selected some stocks from the Shenzhen Stock Exchange and the Shanghai Stock 
Exchange. The daily return rates and prices from 4 May 2023 to 30 April 2024 are 
collected for each stock, resulting in a total of 242 data points. Finally, each of the two 
stock exchanges has four stocks that meet the four predictive models discussed in 
Section 3, with two stocks meeting each of the UDE, UTSA, SDE, and RTSA models 

(𝑛ଵ + 𝑛ଶ + 𝑛ଷ + 𝑛ସ = 8). All the data on daily stock return rates and prices used in 
this paper are obtained from the CHOICE database 
(https://choice.eastmoney.com/dataservice). 

The UDE equation is used to predict the price of stock 300528.SZ. Firstly, the 

parameters 𝑒 = −0.0871 and 𝜎 = 11.6035 are obtained by using the method of 
moments estimation, and the UDE obtained after parameter estimation is 

𝑑𝑋௧ = 𝑒𝑋௧𝑑𝑡 + 𝜎𝑋௧𝑑𝐶௧ (84)

𝑑𝑋௧ = 0.0871𝑋௧𝑑𝑡 + 11.6035𝑋௧𝑑𝐶௧ . (85)

Subsequently, a hypothesis test is performed on the residuals, i.e., whether the 
residuals conform to a linear uncertain distribution. From Equation (40), the number 

of points belonging to the rejection domain is 12, which is less than 𝑛 ∗ 𝛼 = 242 ∗

0.05 = 12.1. This shows that Equation (85) can fit the stock price well. Based on 
Equation (86), the stock price on 6 May 2024 is obtained, and then based on the stock 
price on 30 April 2024, the daily return rate on 6 May 2024 is calculated using the 
formula (32) for the simple return rates, resulting in a daily return rate of 1.71%. 

𝐸෨[𝑋ଵ(𝑡)] = න 1
ଵ

଴

0.94 𝑒𝑥𝑝(−0.087𝑡 + 11.6035𝛷ିଵ(𝛼)𝑡) 𝑑𝛼, (86)

The prediction process for stock 000651.SZ is analogous to that of 300528.SZ. 
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The parameter 𝑒 = 0.1975  and the standard deviation 𝜎 = 3.3732  are used to 
construct the corresponding UDE, which is given by 

𝑑𝑋௧ = 0.1975𝑋௧𝑑𝑡 + 3.3732𝑋௧𝑑𝐶௧. (87)

The hypothesis testing of the residuals indicates that the number of points falling 
in the rejection domain is 12, which is less than the number of points required to reject 

the null hypothesis,𝑛 ∗ 𝛼 = 242 ∗ 0.05 = 12.1. This suggests that the equation can 
predict the stock price well. Based on Equation (88), the stock price on 6 May 2024 is 
calculated, and then based on the simple return rates, the return rate on 6 May 2024 is 
obtained as 0.35%. 

𝑬෩[𝑿𝟐(𝒕)] = න 𝟑
𝟏

𝟎

𝟓. 𝟒𝟐 𝒆𝒙𝒑൫𝟎. 𝟏𝟗𝟕𝟓𝒕 + 𝟑. 𝟑𝟕𝟑𝟐𝜱ି𝟏(𝜶)𝒕൯ 𝒅𝜶, (88)

The AR model is employed to forecast the daily return rates of stock 600886. SH. 
The LB test on the residuals initially indicates that the series is a white noise series. 
The p-value of the PP test is 0.0375, which is less than 0.05, indicating that the series 
is a smooth series. Subsequently, a fixed-order AR model based on the AIC criterion 

is employed to fit the series, thereby obtaining an AR(2)  model. The resulting 

coefficients are as follows: 𝑎଴ = 0 , 𝜖௧ = −0.0011 , 𝑎ଵ = 0.7828 , 𝑎ଶ = 0.4273 . 
The original Equation (41) for the uncertain time series fit is as follows: 

𝑋௧=0.7828𝑋௧ିଵ+0.4273𝑋௧ିଶ-0.0011. (89)

Then the prediction equation is obtained by least square estimation method: 

𝐸෨[𝜁ଵ(𝑡)] = 0.7251𝑋௧ିଵ + 0.2748𝑋௧ିଶ, (90)

where 𝑎଴
∗ = 0 , 𝑎ଵ

∗ = 0.7251 , and 𝑎ଶ
∗ = 0.2748 . Using the aforementioned 

prediction Equation (90), the daily return rate on 6 May 2024 is calculated to be 
1.7095%. 

The prediction process for stock 600674.SH is analogous to that of 600886.SH. 
The residuals are initially subjected to the LB test, which indicates that the series is a 
white noise series. The p-value of the PP test is 0.0272, which is below the 0.05 level 
of significance, indicating that the series is a smooth series. The series is fitted using 
the AR model, according to the fixed order AIC criterion, in order to obtain the AR

(2)  model. The resulting coefficients are as follows: 𝑎଴ = 0 , 0.0021t  ò , 

1 0.7832a   and 2 0.3539a  . The original equation is fitted to the uncertain time 

series, resulting in the following equation: 

1 2=0.7832 +0.3539 -0.0021.t t tX X X   (91)

Then the prediction equation is obtained by least square estimation method: 

  1 1 20.7255 0.2744 ,t tE t X X       (92)

where *
0 0a   , *

1 0.7255a    and *
2 0.2744a   . Through Equation (92), the daily 

return rate of the stock on 6 May 2024 is calculated to be 3.3364%. 
The SDE model is used to predict the price of stock 000786.SZ and thus predict 
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its daily return rates. Firstly, the parameters 2.3212   and 1.4724   are 

obtained by maximum likelihood estimation to obtain the SDE after parameter 
estimation: 

t t t tdS S dt S dW    (93) 

2.3212 1.4724 .t t t tdS S dt S dW   (94) 

Hypothesis testing is conducted on the parameters 𝜇 and 𝜎 using Matlab’s own 
function chi2gof, resulting in a p-value of 0.0187, which exceeds the significance level 
of 0.01. The stock price on 6 May 2024 is firstly obtained from formula 

𝐸෠[𝑆ଵ(𝑡)] = 26.34 𝑒𝑥𝑝(2.3212𝑡) (95)

and then the formula (56) is used to obtain the daily return rates on 6 May 2024 
as 2.35%. 

The stocks 603689.SH and 000786.SZ are analogous, as they are both estimated 

using the maximum likelihood estimation method to obtain the parameters 𝜇 =

2.9116 and 𝜎 = 1.2326 . These parameters correspond to the prediction of the stock 
price of the SDE, which is given by 

2.9116 1.2326 .t t t tdS S dt S dW   (96)

The hypothesis testing of the parameters   and   using Matlab’s own 

function chi2gof yielded a p-value of 0.0331, which is greater than the significance 
level of 0.01. The stock price on 6 May 2024 is determined by the following formula 

𝐸෠[𝑆ଶ(𝑡)] = 56.58 𝑒𝑥𝑝(2.9116𝑡). (97)

The simple return rate is then used to determine the daily return rate on 6 May 
2024, which is calculated to be 2.95%. 

The RStudio software is employed to forecast the daily return rates of 688089.SH 
and 000752.SZ, utilising the RTSA model. In the case of stock 688089.SH, the initial 
step is to verify the smoothness of the series using the ADF test. In all three Equations 

(19)–(21) the p-values are less than 0.05, indicating that the series is smooth. This is 

true for the following scenarios: no-drift-no-trend, with-drift-no-trend, and with-drift-
and-trend. Subsequently, the LB test is conducted by Equation (22), resulting in p-

values of 6.324 × 10ିଷ and 9.813 × 10ିଷ for periods 6 and 12, respectively. These 
values are less than 0.05, indicating that the series is not a white noise series. 

The series is then fitted using the ARIMA model with the BIC criterion to obtain 

the optimal model as ARIMA(1,0,0). The coefficient of this model is 𝜙ଵ = 0.2588. 
Consequently, the model equation is as follows: 

𝑌௧ = 0.2588𝑌௧ିଵ + 𝜀௧ , (98)

where tY  is the daily return rates series, and t  is the error term at moment t . 

Then, the prediction equation is given by: 

  1 10.2588 .tE t Y     (99)
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In accordance with the aforementioned prediction equation, a daily return rate of 
3.0478% is predicted for 6 May 2024. 

As with the stock 688089.SH, we first perform an ADF test on 000752.SZ. In all 
three cases, the p-value is less than 0.05, indicating that the series is smooth. 
Subsequently, the LB test is performed, and the p-values for periods 6 and 12 are found 

to be 2.985 × 10ିଽ and 4.736 × 10ି଼, respectively, which are less than 0.05. This 
suggests that the series is not a white noise series. 

Subsequently, the series is fitted using the ARIMA model, with the optimal 

model selected using the BIC criterion to obtain an ARIMA(1,0,1)  model. The 

coefficients of this model are 𝜙ଵ = 0.7440  and 𝜃ଵ = 0.4930 . Consequently, the 
model equation is as follows: 

𝑌௧ = 0.7440𝑌௧ିଵ + 𝜀௧ − 0.4930𝜀௧ିଵ, (100)

where 𝑌௧ is the daily return rate series, and 𝜀௧ is the error term at moment 𝑡. 
Then, the prediction equation is given by: 

𝐸෠[𝜂ଶ(𝑡)] = 0.7440𝑌௧ିଵ. (101)

In accordance with the aforementioned prediction equation, a daily return rate of 
1.4520% is predicted for 6 May 2024. 

For the above, the results of hypothesis testing are presented in Table 3, while 
the prediction results are shown in Table 4. 

Table 3. Hypothesis testing passed. 

No. Code UDE UTSA SDE RTSA 

1 300528.SZ √ ◊ ◊ ◊ 

2 000651.SZ √ ◊ ◊ ◊ 

3 600886.SH ◊ √ ◊ ◊ 

4 600674.SH ◊ √ ◊ ◊ 

5 000786.SZ ◊ ◊ √ ◊ 

6 603689.SH ◊ ◊ √ ◊ 

7 688089.SH ◊ ◊ ◊ √ 

8 000752.SZ ◊ ◊ ◊ √ 

Lower turnover rate is denoted as 𝑎 = 0.01, maximum risk tolerance as 𝑏 =

0.05, maximum investment proportion for each stock as 𝑐 = 0.25, target return rates 

as ℎ = 0.04, and risk preference factor as 𝜄 = 0.75. In this context, GA is employed 
to solve two sub-models, model (76) and (77), as well as the optimization model (75). 
The results obtained are presented in Table 5. The solutions for model (76) and model 

(77) are 𝑅௠௔௫ = 2.76% and 𝑉௠௜௡
ି = 1.553 × 10ିସ, respectively, which are used as 

normalization standards. Subsequently, these values are substituted into model (75) to 
obtain the solution for the optimization model: 

x=(0.0764,0.2495,0.1767,0.0509,0.0187,0.1715,0.0137,0.2427). 
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Table 4. The data of eight stocks. 

 No. Return rates Expect value (%) 

UDE 
1 1  1.7100 

2 2  0.3500 

UTSA 
3 1  1.7095 

4 2  3.3364 

SDE 
5 1  2.3500 

6 2  2.9500 

RTSA 
7 1  3.0478 

8 2  1.4520 

According to model (75), the optimal value (OV) is 𝑀 = 1.8521, accompanied 

by lower variances of 5.5994 × 10ିସ and return rate of 1.6337%. 

Table 5. The investment proportions in model (75) and sub-models (76) and (77). 

 x  y  p  q  OV 

Model (75) 
(0.0764, 
0.2495) 

(0.1767, 
0.0509) 

(0.0187, 
0.1715) 

(0.0137, 
0.2427) 1.8521M   

Model (76) 
(0.0024, 
0.0025) 

(0.2406, 
0.2488) 

(0.0073, 
0.2488) 

(0.2484, 
0.0023) 

2.76%maxR   

Model (77) 
(0.0032, 
0.0030) 

(0.2373, 
0.2496) 

(0.0073, 
0.2492) 

(0.2461, 
0.0047) 1.553 10minV   

Furthermore, the investment proportions and OVs are calculated for varying 

values of 𝜄, as illustrated in Table 6, along with the corresponding values of R  and 

𝑉ି, as shown in Table 7. As evident in Figure 1, the values of  , resulted in distinct 

OVs. In Figure 2 (a) and (b), the dashed lines represent 𝑅௠௔௫ = 2.76% and 𝑉௠௜௡
ି =

1.553 × 10ିସ. As   increases, the changes in 𝑅 and 𝑉ି are not substantial, but the 

difference in multiples between 𝑉ି and 𝑉௠௜௡
ି  was much larger than the multiples 

between 𝑅௠௔௫  and 𝑅 . Consequently, when normalized, 
௏షି௏೘೔೙

ష

௏೘೔೙
ష  became 

significantly larger than 
ோ೘ೌೣିோ

ோ೘ೌೣ
. Therefore, with an increasing  , the weight of 

௏షି௏೘೔೙
ష

௏೘೔೙
ష  became more pronounced, leading to an increase in the value of 𝑀. 

Table 6. The investment proportions and OV for different  . 

 x  y  p  q  OV 

0.1   (0.0040, 0.0020) (0.2328, 0.2485) (0.0131, 0.2484) (0.2471, 0.0051) 0.0012 

0.2   (0.0184, 0.2476) (0.1836, 0.1232) (0.0809, 0.1828) (0.0144, 0.1490) 0.1361 

0.3   (0.0168, 0.2144) (0.1894, 0.0352) (0.0993, 0.1894) (0.0056, 0.2499) 0.4423 
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Table 6. (Continued). 

 x  y  p  q  OV 

0.4   (0.0522, 0.2251) (0.2281, 0.1023) (0.1152, 0.0795) (0.0293, 0.1684) 0.6956 

0.5   (0.0138, 0.2410) (0.2152, 0.1090) (0.0751, 0.2150) (0.0023, 0.1287) 0.8308 

0.6   (0.1288, 0.2428) (0.1981, 0.0280) (0.1479, 0.0515) (0.0163, 0.1866) 1.5306 

0.7   (0.1749, 0.2475) (0.2034, 0.0291) (0.1071, 0.1370) (0.0138, 0.0872) 1.6587 

0.8   (0.2373, 0.2486) (0.2472, 0.0045) (0.0071, 0.0028) (0.0050, 0.2476) 2.7690 

0.9   (0.0783, 0.2350) (0.2086, 0.0594) (0.1230, 0.1090) (0.0023, 0.1843) 2.2430 

Table 7. R  and V   for different  . 

ι  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

 %R  2.7587 1.8327 1.7170 1.7381 1.8439 1.5575 1.6549 1.3299 1.6564 

 410V    1.5408 4.6970 5.2120 5.1160 4.6489 5.9659 5.4994 7.1296 5.4924 

 
Figure 1. The OV for different  . 

  
(a) R  for different  . (b) V   for different  . 

Figure 2. 𝑅 and 𝑽ି for different  . 
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7. Conclusion 

This paper discussed the portfolio problem in an uncertain random environment. 
Stock return rates were characterized using uncertain random variables. To enhance 
the accuracy of stock return rate predictions, this paper employed four methods to 
predict stock return rates: UDE, UTSA, SDE, and RTSA. Additionally, the lower 
variance was utilized to measure investment risk, which aligned more closely with the 
definition of risk and the mindset of investors than measuring risk with variance. A 
risk preference factor   was introduced, leading to the proposal of an uncertain 

random mean-lower variance portfolio model. The results of numerical experiments 
demonstrated the effectiveness of the method for solving portfolio return rate 
maximization.  

The model is being constructed based on the last five years of market data. 
However, this dataset may be subject to sample selection bias, as it fails to take into 
account changes in the economic cycle. Furthermore, the accuracy and completeness 
of the data are pivotal factors influencing the model’s validity, particularly when 
confronted with the absence of data or anomalous volatility. Furthermore, market 
volatility and policy changes represent external factors that must be taken into account. 
These factors not only interfere with the normal functioning of the market, but they 
may also cause the historical performance on which the model is based to fail to reflect 
future trends. Although the model performs well on the training set, it may not be able 
to cope well with future market changes or extreme situations. These are some 
unresolved issues. 

The portfolio model proposed in this paper has both theoretical value and the 
potential for wide-ranging applications in several fields. In economics, the model can 
be utilized for portfolio optimization and risk management. In engineering, it can be 
employed to assess the efficacy of project investments. Furthermore, in data science, 
the model can be integrated with machine learning algorithms for feature selection and 
predictive analysis. Future research could investigate the potential of machine learning 
techniques to enhance model performance on an ongoing basis. This not only has 
implications for theoretical research but also offers substantial support for investment 
decisions in practice. 

Author contributions: Conceptualization, YS (Yanrui Su), YS (Yanjiao Song) and 
CL; methodology, YS (Yanrui Su), YS (Yanjiao Song) and CL; software, YS (Yanrui 
Su), YS (Yanjiao Song) and CL; validation, YS (Yanrui Su), YS (Yanjiao Song) and 
CL; formal analysis, YS (Yanrui Su), YS (Yanjiao Song) and CL; investigation, YS 
(Yanrui Su), YS (Yanjiao Song) and CL; resources, YS (Yanrui Su), YS (Yanjiao Song) 
and CL; data curation, YS (Yanrui Su); writing—original draft preparation, YS (Yanrui 
Su), YS (Yanjiao Song) and CL; writing—review and editing, YS (Yanrui Su), YS 
(Yanjiao Song) and CL; visualization, YS (Yanrui Su) and CL; supervision, YS (Yanrui 
Su) and YS (Yanjiao Song); project administration, YS (Yanrui Su), YS (Yanjiao Song) 
and CL; funding acquisition, YS (Yanrui Su), YS (Yanjiao Song) and CL. All authors 
have read and agreed to the published version of the manuscript. 

Acknowledgments: The authors thank all the teachers at the School of Mathematics 
and Statistics, Nanjing University of Science and Technology, China, with special 



Mathematics and Systems Science 2024, 2(1), 2859.  

29 

thanks to Professor Yuanguo Zhu for taking the time to give us a lot of guidance. 

Conflict of interest: The authors declare no conflict of interest. 

References 

1. Markowitz H. Portfolio selection*. The Journal of Finance. 1952; 7(1): 77-91. doi: 10.1111/j.1540-
6261.1952.tb01525.x 

2. Jin Y, Zhang W. Robust portfolio optimization with higher moments. Mathematical Finance, 2021, 31(4): 1132-
1165. 

3. Yang J, Li Y. Stochastic dominance and portfolio optimization. Review of Financial Studies, 2024, 37(1): 50-78. 
4. Konno H, Suzuki K ichi. A mean-variance-skewness portfolio optimization model. Journal of the Operations 

Research Society of Japan. 1995; 38(2): 173-187. doi: 10.15807/jorsj.38.173 
5. Huang X. Portfolio selection with a new definition of risk. European Journal of Operational Research. 2008; 

186(1): 351-357. doi: 10.1016/j.ejor.2007.01.045 
6. Krejić N, Kumaresan M, Rožnjik A. VaR optimal portfolio with transaction costs. Applied Mathematics and 

Computation. 2011; 218(8): 4626-4637. doi: 10.1016/j.amc.2011.10.047 
7. Li B, Shu Y. The skewness for uncertain random variable and application to portfolio selection problem. Journal 

of Industrial & Management Optimization. 2022; 18(1): 457. doi: 10.3934/jimo.2020163 
8. Li J, Liu X. GARCH model with fractional Brownian motion correction. Statistics and Decision, 2021, 1(5): 29-

33. 
9. Konno H, Shirakawa H, Yamazaki H. A mean-absolute deviation-skewness portfolio optimization model. Annals 

of Operations Research. 1993; 45(1): 205-220. doi: 10.1007/bf02282050 
10. Farrar D. The Investment decision under Uncertainty. Prentice Hall, Englewood Cliffs, New Jersey, 1962. 
11. Li X, He L. Higher-order moments and risk management in portfolio optimization. Quantitative Finance, 2023, 

23(1): 57-76. 
12. Wang Z, Liu Q. Incorporating higher-order moments into portfolio construction under uncertainty. Review of 

Financial Studies, 2024, 37(3): 987-1020. 
13. Zadeh L. Fuzzy sets. Information and Control, 1965, 8(3): 338-353.  
14. Deng X, Li R. A portfolio selection model with borrowing constraint based on possibility theory. Applied Soft 

Computing. 2012; 12(2): 754-758. doi: 10.1016/j.asoc.2011.10.017 
15. Pahade JK, Jha M. Credibilistic variance and skewness of trapezoidal fuzzy variable and mean–variance–

skewness model for portfolio selection. Results in Applied Mathematics. 2021; 11: 100159. doi: 
10.1016/j.rinam.2021.100159 

16. Liu B. Uncertainty Theory, 2nd ed Springer-Verlag, Berlin, 2007. 
17. Liu B. Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer-Verlag, Berlin, 

2010. 
18. Yu L, Wang L. Uncertainty Modeling in Portfolio Optimization: A Review. European Journal of Operational 

Research, 2021, 293(2): 645-659. 
19. Cai X, Zhu H. Robust Portfolio Optimization under Uncertainty with Conditional Value-at-Risk. Operations 

Research Letters, 2022; 50(1): 82-90. 
20. Liu S, Zhou X. Dynamic Portfolio Optimization with Uncertainty: A Stochastic Programming Approach. 

Mathematical Finance, 2023; 33(3): 678-705. 
21. Liu Y. Uncertain random variables: a mixture of uncertainty and randomness. Soft Computing. 2012; 17(4): 625-

634. doi: 10.1007/s00500-012-0935-0 
22. Qin Z. Mean-variance model for portfolio optimization problem in the simultaneous presence of random and 

uncertain returns. European Journal of Operational Research. 2015; 245(2): 480-488. doi: 



Mathematics and Systems Science 2024, 2(1), 2859.  

30 

10.1016/j.ejor.2015.03.017 
23. Mehlawat MK, Gupta P, Khan AZ. Portfolio optimization using higher moments in an uncertain random 

environment. Information Sciences. 2021; 567: 348-374. doi: 10.1016/j.ins.2021.03.019 
24. Treanja, S. LU-Optimality Conditions in Optimization Problems with Mechanical Work Objective Functionals. 

IEEE Transactions on Neural Networks and Learning Systems, 2021. 
25. Holland J. Adaptation in natural and artificial systems. University of Michigan Press, New York, 1975. 
26. Kaya O, Schildbach J, Schneider S, Darius R. Robo-advice-a true innovation in asset management, Deutsche 

Bank Research, 2017. 
27. DeMiguel V, Garlappi L, Uppal R. Optimal Versus Naive Diversification: How Inefficient is the 1/NPortfolio 

Strategy? Review of Financial Studies. 2007; 22(5): 1915-1953. doi: 10.1093/rfs/hhm075 
28. Kearney C, Liu S. Textual sentiment in finance: A survey of methods and models. International Review of 

Financial Analysis. 2014; 33: 171-185. doi: 10.1016/j.irfa.2014.02.006 
29. Yao K, Chen X. A numerical method for solving uncertain differential equations. Journal of Intelligent & Fuzzy 

Systems. 2013; 25(3): 825-832. doi: 10.3233/ifs-120688 
30. Liu B. Uncertainty Theory, 4th ed Springer Berlin Heidelberg; 2015. doi: 10.1007/978-3-662-44354-5 
31. Ye T, Liu B. Uncertain hypothesis test with application to uncertain regression analysis. Fuzzy Optimization and 

Decision Making. 2021; 21(2): 157-174. doi: 10.1007/s10700-021-09365-w 
32. Phillips PCB, Perron P. Testing for a unit root in time series regression. Biometrika. 1988; 75(2): 335-346. doi: 

10.1093/biomet/75.2.335 

33. Akhter MF, Hassan D, Abbas S. Predictive ARIMA Model for coronal index solar cyclic data. Astronomy and 

Computing. 2020; 32: 100403. doi: 10.1016/j.ascom.2020.100403 
34. Evans L. An Introduction to Stochastic Differential Equations. 2013. doi: 10.1090/mbk/082 
35. Harlow WV, Rao RKS. Asset Pricing in a Generalized Mean-Lower Partial Moment Framework: Theory and 

Evidence. The Journal of Financial and Quantitative Analysis. 1989; 24(3): 285. doi: 10.2307/2330813 

36. Yang X, Liu B. Uncertain time series analysis with imprecise observations. Fuzzy Optimization and Decision 

Making. 2018; 18(3): 263-278. doi: 10.1007/s10700-018-9298-z 
37. Yao K, Liu B. Parameter estimation in uncertain differential equations. Fuzzy Optimization and Decision Making. 

2019; 19(1): 1-12. doi: 10.1007/s10700-019-09310-y 


