On matrix strong Diophantine 27-Tuples and matrix elliptic curves
Vol 2, Issue 2, 2024
VIEWS - 1017 (Abstract)
Download PDF
Abstract
We introduce an algorithm which allows us to prove that there exists an infinite number of matrix strong Diophantine -tuples. We show that Diophantine quadruples generate matrix elliptic (or hyperelliptic) curves which have each matrix points.
Keywords
References
1. Bashmakova IG. Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers. Moscow: Nauka; 1974.
2. Euler L. Theorematum quorundam arithmeticorum demonstrationes. Novi Commentarii academiae scientiarum Petropolitanae. 1738; 10: 125-146.
3. Baker A, Davenport H. The equations 3x^2-2=y^2 and 8x^2-7=z^2. The Quarterly Journal of Mathematics. 1969; 20(1): 129-137. doi: 10.1093/qmath/20.1.129
4. Hoggatt VE, Bergum GE. A problem of Fermat and the Fibonacci sequence, Fibonacci Quart. Available online: https://www.mathstat.dal.ca/FQ/Scanned/15-4/hoggatt1.pdf (accessed on 7 March 2024).
5. Joseph A, Jr Hoggatt VE, Straus EG. On Euler’s solution of a problem of Diophantus. Fibonacci Quarterly. 1979; 17(4): 333339.
6. Veluppillai M. A Collection of Manuscripts Related to the Fibonacci sequence, The Fibonacci Association. Santa Clara; 1980. pp. 71-75.
7. Kedlaya K. Solving constrained Pell equations. Mathematics of Computation. 1998; 67(222): 833-842. doi: 10.1090/s0025-5718-98-00918-1
8. Dujella A. The problem of the extension of a parametric family of Diophantine triples. Publicationes Mathematicae Debrecen. 1997; 51(3-4): 311-322. doi: 10.5486/pmd.1997.1886
9. Dujella A, Petho A. A Generalization of a Theorem of Baker and Davenport. The Quarterly Journal of Mathematics. 1998; 49(3): 291-306. doi: 10.1093/qmathj/49.3.291
10. Dujella A. A proof of the Hoggatt-Bergum conjecture. Proceedings of the American Mathematical Society. 1999; 127(7): 1999-2005. doi: 10.1090/s0002-9939-99-04875-3
11. Fujita Y. The extensibility of Diophantine pairs{k−1,k+1}. Journal of Number Theory. 2008; 128(2): 322-353. doi: 10.1016/j.jnt.2007.03.013
12. Dujella A. There are only finitely many Diophantine quintuples. Journal für die reine und angewandte Mathematik (Crelles Journal). 2004; 2004(566). doi: 10.1515/crll.2004.003
13. He B, Togbé A, Ziegler V. There is no Diophantine Quintuple.Transactions of the American Mathematical Society. arXiv. 2019; arXiv:1610.04020.
14. Dujella A, Petričcević V. Strong Diophantine Triples. Experimental Mathematics. 2008; 17(1): 83-89. doi: 10.1080/10586458.2008.10129020
15. Siegel CL. The integer solutions of the equation y^2=ax^n+bx^(n-1)+⋯+k. Journal of the London Mathematical Society. 1926.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Joachim Moussounda Mouanda, Kouakou Kouassi Vincent
License URL: https://creativecommons.org/licenses/by/4.0/
Editor-in-Chief
Prof. Youssri Hassan Youssri
Cairo University, Egypt
Indexing & Archiving
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.