On matrix strong Diophantine 27-Tuples and matrix elliptic curves

Joachim Moussounda Mouanda, Kouakou Kouassi Vincent

Article ID: 2624
Vol 2, Issue 2, 2024
DOI: https://doi.org/10.54517/mss.v2i2.2624
Received: 14 March 2024; Accepted: 26 June 2024; Available online: 7 July 2024; Issue release: 15 November 2024

VIEWS - 1017 (Abstract)

Download PDF

Abstract

We introduce an algorithm which allows us to prove that there exists an infinite number of matrix strong Diophantine -tuples. We show that Diophantine quadruples generate matrix elliptic (or hyperelliptic) curves which have each  matrix points.


Keywords

Matrices of integers; Diophantine m-tuples; elliptic curves


References

1. Bashmakova IG. Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers. Moscow: Nauka; 1974.

2. Euler L. Theorematum quorundam arithmeticorum demonstrationes. Novi Commentarii academiae scientiarum Petropolitanae. 1738; 10: 125-146.

3. Baker A, Davenport H. The equations 3x^2-2=y^2 and 8x^2-7=z^2. The Quarterly Journal of Mathematics. 1969; 20(1): 129-137. doi: 10.1093/qmath/20.1.129

4. Hoggatt VE, Bergum GE. A problem of Fermat and the Fibonacci sequence, Fibonacci Quart. Available online: https://www.mathstat.dal.ca/FQ/Scanned/15-4/hoggatt1.pdf (accessed on 7 March 2024).

5. Joseph A, Jr Hoggatt VE, Straus EG. On Euler’s solution of a problem of Diophantus. Fibonacci Quarterly. 1979; 17(4): 333339.

6. Veluppillai M. A Collection of Manuscripts Related to the Fibonacci sequence, The Fibonacci Association. Santa Clara; 1980. pp. 71-75.

7. Kedlaya K. Solving constrained Pell equations. Mathematics of Computation. 1998; 67(222): 833-842. doi: 10.1090/s0025-5718-98-00918-1

8. Dujella A. The problem of the extension of a parametric family of Diophantine triples. Publicationes Mathematicae Debrecen. 1997; 51(3-4): 311-322. doi: 10.5486/pmd.1997.1886

9. Dujella A, Petho A. A Generalization of a Theorem of Baker and Davenport. The Quarterly Journal of Mathematics. 1998; 49(3): 291-306. doi: 10.1093/qmathj/49.3.291

10. Dujella A. A proof of the Hoggatt-Bergum conjecture. Proceedings of the American Mathematical Society. 1999; 127(7): 1999-2005. doi: 10.1090/s0002-9939-99-04875-3

11. Fujita Y. The extensibility of Diophantine pairs{k−1,k+1}. Journal of Number Theory. 2008; 128(2): 322-353. doi: 10.1016/j.jnt.2007.03.013

12. Dujella A. There are only finitely many Diophantine quintuples. Journal für die reine und angewandte Mathematik (Crelles Journal). 2004; 2004(566). doi: 10.1515/crll.2004.003

13. He B, Togbé A, Ziegler V. There is no Diophantine Quintuple.Transactions of the American Mathematical Society. arXiv. 2019; arXiv:1610.04020.

14. Dujella A, Petričcević V. Strong Diophantine Triples. Experimental Mathematics. 2008; 17(1): 83-89. doi: 10.1080/10586458.2008.10129020

15. Siegel CL. The integer solutions of the equation y^2=ax^n+bx^(n-1)+⋯+k. Journal of the London Mathematical Society. 1926.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Joachim Moussounda Mouanda, Kouakou Kouassi Vincent

License URL: https://creativecommons.org/licenses/by/4.0/