
A survey on the applications of machine learning, deep learning, and reinforcement learning in wireless communications
Vol 3, Issue 1, 2025
Download PDF
Abstract
This survey explores the integration of machine learning (ML), deep learning (DL), and reinforcement learning (RL) within wireless communications. It reviews various methods, algorithms, and applications while addressing the challenges and future research directions in this field. The paper highlights the necessity of intelligent techniques to enhance the performance and management of wireless networks, driven by the increasing complexity and demand for higher efficiency. Key areas of focus include network optimization, resource management, security, signal recognition, channel coding, traffic prediction, access control, and energy optimization. The survey also discusses emerging techniques such as federated learning, transfer learning, and multi-agent reinforcement learning, emphasizing their potential to revolutionize wireless communication systems.
Keywords
References
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Author(s)
License URL: https://creativecommons.org/licenses/by/4.0/

Prof. Maode Ma
Qatar University, Qatar
The field of computer and telecommunications engineering is rapidly advancing, with the following being some of the latest developments.
more
We are pleased to congratulate the first anniversiry of the journal of Computer and Telecommunication Engineering (CTE).
more
Owing to the tireless dedication of the editor-in-chief, editorial board members, and the in-house editorial team, we are proud to announce the successful online launch of the first issue of Computer and Telecommunication Engineering.
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.