Analyzing the performance of secondary users in satellite-terrestrial systems with cognitive radio assistance

Huu Q. Tran

Article ID: 2524
Vol 2, Issue 2, 2024
DOI: https://doi.org/10.54517/cte.v2i2.2524
VIEWS - 3696 (Abstract)

Download PDF

Abstract

The paper investigates the outage probability (OP) of a cognitive radio-based satellite-ground transmission system. In this configuration, both direct and relay links are activated to facilitate transmission from the primary satellite source to terrestrial users. The primary metric under scrutiny is the outage probability for both the primary and secondary networks. Utilizing the Shadowed-Rician fading model, commonly applied to satellite channels, for the satellite segment, and Nakagami-m fading models for terrestrial channels, we assess the OP by analyzing the expressions for both primary and secondary users. Additionally, we explore the impact of key system parameters on the OP’s performance. Indeed, the signal-to-noise ratio (SNR) and target rate are the main factors affecting the outage behavior of users on the ground. We identify certain conditions necessary to achieve improved performance by controlling key system parameters. Furthermore, this paper provides guidelines for designing cognitive radio (CR) systems in satellite configurations to meet the quality requirements of received signals on the ground. The analysis results are validated through Monte Carlo simulations implemented using MATLAB.


Keywords

cognitive radio (CR); outage probability (OP); satellite-terrestrial system


References

1. Li X, Wang Q, Peng H, et al. A Unified Framework for HS-UAV NOMA Networks: Performance Analysis and Location Optimization. IEEE Access. 2020; 8: 13329-13340. doi: 10.1109/access.2020.2964730

2. Evans B, Werner M, Lutz E, et al. Integration of satellite and terrestrial systems in future multimedia communications. IEEE Wireless Communications. 2005; 12(5): 72-80. doi: 10.1109/mwc.2005.1522108

3. Paillassa B, Escrig B, Dhaou R, et al. Improving satellite services with cooperative communications. International Journal of Satellite Communications and Networking. 2011; 29(6): 479-500. doi: 10.1002/sat.989

4. Sakarellos VK, Kourogiorgas C, Panagopoulos AD. Cooperative Hybrid Land Mobile Satellite–Terrestrial Broadcasting Systems: Outage Probability Evaluation and Accurate Simulation. Wireless Personal Communications. 2014; 79(2): 1471-1481. doi: 10.1007/s11277-014-1941-6

5. Chini P, Giambene G, Kota S. A survey on mobile satellite systems. International Journal of Satellite Communications and Networking. 2009; 28(1): 29-57. doi: 10.1002/sat.941

6. Bhatnagar MR, M.K. A. Performance Analysis of AF Based Hybrid Satellite-Terrestrial Cooperative Network over Generalized Fading Channels. IEEE Communications Letters. 2013; 17(10): 1912-1915. doi: 10.1109/lcomm.2013.090313.131079

7. Bhatnagar MR, Arti MK. Performance Analysis of Hybrid Satellite-Terrestrial FSO Cooperative System. IEEE Photonics Technology Letters. 2013; 25(22): 2197-2200. doi: 10.1109/lpt.2013.2282836

8. Javed U, He D, Liu P. Performance Characterization of a Hybrid Satellite-Terrestrial System with Co-Channel Interference over Generalized Fading Channels. Sensors. 2016; 16(8): 1236. doi: 10.3390/s16081236

9. Lin M, Ouyang J, Zhu WP. On the performance of hybrid satelliteterrestrial cooperative networks with interferences. In: Proceedings of the 48th Asilomar Conf. Signals, Syst. Comput. (ACSSC); 2-5 November 2014; Pacific Grove, CA, USA. pp. 1796-1800. doi: 10.1109/ACSSC.2014.7094777

10. Yang L, Hasna MO. Performance Analysis of Amplify-and-Forward Hybrid Satellite-Terrestrial Networks with Cochannel Interference. IEEE Transactions on Communications. 2015; 63(12): 5052-5061. doi: 10.1109/tcomm.2015.2495278

11. Sreng S, Escrig B, Boucheret ML. Exact Symbol Error Probability of Hybrid/Integrated Satellite-Terrestrial Cooperative Network. IEEE Transactions on Wireless Communications. 2013; 12(3): 1310-1319. doi: 10.1109/twc.2013.013013.120899

12. An K, Ouyang J, Lin M, et al. Outage Analysis of Multi-Antenna Cognitive Hybrid Satellite-Terrestrial Relay Networks With Beamforming. IEEE Communications Letters. 2015; 19(7): 1157-1160. doi: 10.1109/lcomm.2015.2428256

13. An K, Lin M, Ouyang J, et al. Symbol Error Analysis of Hybrid Satellite–Terrestrial Cooperative Networks With Cochannel Interference. IEEE Communications Letters. 2014; 18(11): 1947-1950. doi: 10.1109/lcomm.2014.2361517

14. Hemachandra KT, Beaulieu NC. Outage Analysis of Opportunistic Scheduling in Dual-Hop Multiuser Relay Networks in the Presence of Interference. IEEE Transactions on Communications. 2013; 61(5): 1786-1796. doi: 10.1109/tcomm.2013.031213.120686

15. Erwu L, Dongyao W, Jimin L, et al. Performance evaluation of bandwidth allocation in 802.16j mobile multi-hop relay networks. In Proceedings of the IEEE VTC-Spring; 22-25 April 2007; Dublin, Ireland. pp. 939-943. doi: 10.1109/VETECS.2007.202

16. An K, Lin M, Liang T. On the Performance of Multiuser Hybrid Satellite-Terrestrial Relay Networks with Opportunistic Scheduling. IEEE Communications Letters. 2015; 19(10): 1722-1725. doi: 10.1109/lcomm.2015.2466535

17. Upadhyay PK, Sharma PK. Max-Max User-Relay Selection Scheme in Multiuser and Multirelay Hybrid Satellite-Terrestrial Relay Systems. IEEE Communications Letters. 2016; 20(2): 268-271. doi: 10.1109/lcomm.2015.2502599

18. Haykin S. Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications. 2005; 23(2): 201-220. doi: 10.1109/jsac.2004.839380

19. Zou Y, Zhu J, Zheng B, et al. An Adaptive Cooperation Diversity Scheme with Best-Relay Selection in Cognitive Radio Networks. IEEE Transactions on Signal Processing. 2010; 58(10): 5438-5445. doi: 10.1109/tsp.2010.2053708

20. Han Y, Pandharipande A, Ting SH. Cooperative decode-and-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications. 2009; 8(10): 4945-4950. doi: 10.1109/twc.2009.081484

21. Manna R, Louie RHY, Yonghui Li, et al. Cooperative Spectrum Sharing in Cognitive Radio Networks with Multiple Antennas. IEEE Transactions on Signal Processing. 2011; 59(11): 5509-5522. doi: 10.1109/tsp.2011.2163068

22. Guo K, Liu R, Alazab M, et al. STAR-RIS-Empowered Cognitive Non-Terrestrial Vehicle Network With NOMA. IEEE Transactions on Intelligent Vehicles. 2023; 8(6): 3735-3749. doi: 10.1109/tiv.2023.3264212

23. Liu R, Guo K, An K, et al. Resource Allocation for Cognitive Satellite-HAP-Terrestrial Networks With Non-Orthogonal Multiple Access. IEEE Transactions on Vehicular Technology. 2023; 72(7): 9659-9663. doi: 10.1109/tvt.2023.3252642

24. Liu R, Guo K, An K, et al. Resource Allocation for NOMA-Enabled Cognitive Satellite-UAV-Terrestrial Networks With Imperfect CSI. IEEE Transactions on Cognitive Communications and Networking. 2023; 9(4): 963-976. doi: 10.1109/tccn.2023.3261311

25. An K, Lin M, Zhu WP, et al. Outage Performance of Cognitive Hybrid Satellite–Terrestrial Networks With Interference Constraint. IEEE Transactions on Vehicular Technology. 2016; 65(11): 9397-9404. doi: 10.1109/tvt.2016.2519893

26. Shi S, Li G, An K, et al. Optimal power control for real-time applications in cognitive satellite terrestrial networks. IEEE Communications Letters. 2017; 21(8): 1815-1818. doi: 10.1109/LCOMM.2017.2684798

27. Kolawole OY, Vuppala S, Sellathurai M, et al. On the Performance of Cognitive Satellite-Terrestrial Networks. IEEE Transactions on Cognitive Communications and Networking. 2017; 3(4): 668-683. doi: 10.1109/tccn.2017.2763619

28. Singh V, Solanki S, Upadhyay PK. Cognitive Relaying Cooperation in Satellite-Terrestrial Systems with Multiuser Diversity. IEEE Access. 2018; 6: 65539-65547. doi: 10.1109/access.2018.2877130

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Huu Q. Tran

License URL: https://creativecommons.org/licenses/by/4.0/