Slot fed circularly polarized magneto-electric dipole antenna array fed by optimized printed microstrip gap waveguide network

Abdelmoniem T. Hassan, Ahmed A. Kishk

Article ID: 2368
Vol 2, Issue 1, 2024
DOI: https://doi.org/10.54517/cte.v2i1.2368
VIEWS - 60 (Abstract)

Abstract

A compact circularly polarized 8 × 8 antenna array is designed for the 60 GHz band. The array comprises circularly polarized magneto-electric dipoles (CP-ME-Dipole) excited by narrow slots. The slots are fed by a printed gap waveguide (PGWG) cooperative network optimized based on the termination of the effective impedance of the array elements. Thus, it accounts for the space mutual coupling of the antenna elements. A procedure based on the full-wave analysis of a 4 ´ 4 array is used to estimate each element’s 8 × 8 array effective port impedance. The cooperative feeding network is designed based on the known effective impedances. The array is divided into two half subarrays out of phase from each other, and a rectangular waveguide feeds both sides. The commonly measured bandwidth of 18.3% achieves return loss better than 10 dB and an axial ratio below 3 dB (AR) of less than 3 dB. A maximum gain of 26.2 dBic with a high radiation efficiency of 82% radiation efficiency.


Keywords

5G; mmWave antenna array; circular polarization; printed gap waveguide; magneto-electric dipole

Full Text:

PDF



References

1. Smulders P. Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions. IEEE Communications Magazine. 2002; 40(1): 140-147. doi: 10.1109/35.978061

2. Rappaport TS, Xing Y, MacCartney GR, et al. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models. IEEE Transactions on Antennas and Propagation. 2017; 65(12): 6213-6230. doi: 10.1109/tap.2017.2734243

3. Lockie D, Peck D. High-data-rate millimeter-wave radios. IEEE Microwave Magazine. 2009; 10(5): 75-83. doi: 10.1109/mmm.2009.932834

4. Zheng K, Zhao L, Mei J, et al. 10 Gb/s hetsnets with millimeter-wave communications: access and networking - challenges and protocols. IEEE Communications Magazine. 2015; 53(1): 222-231. doi: 10.1109/mcom.2015.7010538

5. Rangan S, Rappaport TS, Erkip E. Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges. Proceedings of the IEEE. 2014; 102(3): 366-385. doi: 10.1109/jproc.2014.2299397

6. Manabe T, Sato K, Masuzawa H, et al. Polarization dependence of multipath propagation and high-speed transmission characteristics of indoor millimeter-wave channel at 60 GHz. IEEE Transactions on Vehicular Technology. 1995; 44(2): 268-274. doi: 10.1109/25.385918

7. Hirokawa J, Ando M. Efficiency of 76-GHz post-wall waveguide-fed parallel-plate slot arrays. IEEE Transactions on Antennas and Propagation. 2000; 48(11): 1742-1745. doi: 10.1109/8.900232

8. Hirokawa J, Ando M. Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates. IEEE Transactions on Antennas and Propagation. 1998; 46(5): 625-630. doi: 10.1109/8.668903

9. Deslandes D, Wu K. Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave and Wireless Components Letters. 2001; 11(2): 68-70. doi: 10.1109/7260.914305

10. Li Y, Luk KM. Low-Cost High-Gain and Broadband Substrate- Integrated-Waveguide-Fed Patch Antenna Array for 60-GHz Band. IEEE Transactions on Antennas and Propagation. 2014; 62(11): 5531-5538. doi: 10.1109/tap.2014.2350509

11. Li Y, Luk KM. 60-GHz Substrate Integrated Waveguide Fed Cavity-Backed Aperture-Coupled Microstrip Patch Antenna Arrays. IEEE Transactions on Antennas and Propagation. 2015; 63(3): 1075-1085. doi: 10.1109/tap.2015.2390228

12. Zhao Y, Luk KM. Dual Circular-Polarized SIW-Fed High-Gain Scalable Antenna Array for 60 GHz Applications. IEEE Transactions on Antennas and Propagation. 2018; 66(3): 1288-1298. doi: 10.1109/tap.2018.2797530

13. Wang L, Yin X, Li S, et al. Phase Corrected Substrate Integrated Waveguide H-Plane Horn Antenna With Embedded Metal-Via Arrays. IEEE Transactions on Antennas and Propagation. 2014; 62(4): 1854-1861. doi: 10.1109/tap.2014.2298042

14. Wang L, Yin X, Esquius-Morote M, et al. Circularly Polarized Compact LTSA Array in SIW Technology. IEEE Transactions on Antennas and Propagation. 2017; 65(6): 3247-3252. doi: 10.1109/tap.2017.2696955

15. Li T, Chen ZN. Control of Beam Direction for Substrate-Integrated Waveguide Slot Array Antenna Using Metasurface. IEEE Transactions on Antennas and Propagation. 2018; 66(6): 2862-2869. doi: 10.1109/tap.2018.2823755

16. Li T, Chen ZN. A Dual-Band Metasurface Antenna Using Characteristic Mode Analysis. IEEE Transactions on Antennas and Propagation. 2018; 66(10): 5620-5624. doi: 10.1109/tap.2018.2860121

17. Kildal PS. Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves. Proc. 3rd Eur. Conf. Antennas Propag. (EuCAP); March 2009. pp. 28-32.

18. Zaman AU, Kildal PS. Gap waveguides. In: Chen ZN, Liu D, Nakano H, et al. (editors). Handbook of Antenna Technologies. Singapore: Springer; 2016. pp. 3273-3347.

19. Zaman AU, Kildal PS. Different gap waveguide slot array configurations for mmwave fixed beam antenna application. 2016 10th European Conference on Antennas and Propagation (EuCAP); April 2016. doi: 10.1109/eucap.2016.7481541

20. Sun H, Guo YX, Wang Z. 60-GHz Circularly Polarized U-Slot Patch Antenna Array on LTCC. IEEE Transactions on Antennas and Propagation. 2013; 61(1): 430-435. doi: 10.1109/tap.2012.2214018

21. Li M, Luk KM. Low-Cost Wideband Microstrip Antenna Array for 60-GHz Applications. IEEE Transactions on Antennas and Propagation. 2014; 62(6): 3012-3018. doi: 10.1109/tap.2014.2311994

22. Miura Y, Hirokawa J, Ando M, et al. A circularly-polarized aperture array antenna with a corporate-feed hollow-waveguide circuit in the 60 GHz-band. 2011 IEEE International Symposium on Antennas and Propagation (APSURSI); July 2011. doi: 10.1109/aps.2011.5997168

23. Guntupalli AB, Ke Wu. 60-GHz Circularly Polarized Antenna Array Made in Low-Cost Fabrication Process. IEEE Antennas and Wireless Propagation Letters. 2014; 13: 864-867. doi: 10.1109/lawp.2014.2320906

24. Sun YX, Leung KW. Circularly Polarized Substrate-Integrated Cylindrical Dielectric Resonator Antenna Array for 60 GHz Applications. IEEE Antennas and Wireless Propagation Letters. 2018; 17(8): 1401-1405. doi: 10.1109/lawp.2018.2847295

25. Li Y, Luk KM. A 60-GHz Wideband Circularly Polarized Aperture-Coupled Magneto-Electric Dipole Antenna Array. IEEE Transactions on Antennas and Propagation. 2016; 64(4): 1325-1333. doi: 10.1109/tap.2016.2537390

26. Miura Y, Hirokawa J, Ando M, et al. Double-Layer Full-Corporate-Feed Hollow-Waveguide Slot Array Antenna in the 60-GHz Band. IEEE Transactions on Antennas and Propagation. 2011; 59(8): 2844-2851. doi: 10.1109/tap.2011.2158784

27. Li Y, Luk KM. Low-Cost High-Gain and Broadband Substrate- Integrated-Waveguide-Fed Patch Antenna Array for 60-GHz Band. IEEE Transactions on Antennas and Propagation. 2014; 62(11): 5531-5538. doi: 10.1109/tap.2014.2350509

28. Li Y, Luk KM. 60-GHz Substrate Integrated Waveguide Fed Cavity-Backed Aperture-Coupled Microstrip Patch Antenna Arrays. IEEE Transactions on Antennas and Propagation. 2015; 63(3): 1075-1085. doi: 10.1109/tap.2015.2390228

29. Liu J, Vosoogh A, Zaman AU, Kildal PS. Design of a cavity backed slot array unit cell on inverted microstrip gap waveguide. Proc. Int. Symp. Antennas Propag. (ISAP); November 2015. pp. 1-4.

30. Liu J, Vosoogh A, Zaman AU, Kildal PS. Design of 8×8 slot array antenna based on inverted microstrip gap waveguide. Proc. Int. Symp. Antennas Propag. (ISAP); October 2016. pp. 760-761.

31. Liu J, Vosoogh A, Zaman AU, et al. Design and Fabrication of a High-Gain 60-GHz Cavity-Backed Slot Antenna Array Fed by Inverted Microstrip Gap Waveguide. IEEE Transactions on Antennas and Propagation. 2017; 65(4): 2117-2122. doi: 10.1109/tap.2017.2670509

32. Farahbakhsh A, Zarifi D, Zaman AU. 60-GHz Groove Gap Waveguide Based Wideband $H$ -Plane Power Dividers and Transitions: For Use in High-Gain Slot Array Antenna. IEEE Transactions on Microwave Theory and Techniques. 2017; 65(11): 4111-4121. doi: 10.1109/tmtt.2017.2699680

33. Luk KM, Wong H. A new wideband unidirectional antenna element. Int. J. Microw. Opt. Technol. 2006; 1(1): 35-44.

34. Ahmed AK. Design of Large Finite Arrays Using Simulations or Measurements of Small Arrays. Forum for Electromagnetic Res. Methods and Appl. Technologies (FERMAT); July–August 2014.

35. Kishk AA. Prediction of large array characteristics from small array parameters. 2nd European Conference on Antennas and Propagation (EuCAP 2007); 2007. doi: 10.1049/ic.2007.1111

36. Kishk AA, Hassan AT. Design of Large Finite Array Antennas and its Feeding Network. 2019 IEEE International Conference on Computational Electromagnetics (ICCEM); March 2019. doi: 10.1109/compem.2019.8779178

37. Hassan AT, Kishk AA. Efficient Procedure to Design Large Finite Array and Its Feeding Network With Examples of ME-Dipole Array and Microstrip Ridge Gap Waveguide Feed. IEEE Transactions on Antennas and Propagation. 2020; 68(6): 4560-4570. doi: 10.1109/tap.2020.2972407

38. Vosoogh A, Sorkherizi MS, Zaman AU, et al. An Integrated Ka-Band Diplexer-Antenna Array Module Based on Gap Waveguide Technology With Simple Mechanical Assembly and No Electrical Contact Requirements. IEEE Transactions on Microwave Theory and Techniques. 2018; 66(2): 962-972. doi: 10.1109/tmtt.2017.2757469

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Abdelmoniem T. Hassan, Ahmed A. Kishk

License URL: https://creativecommons.org/licenses/by/4.0/