
Leaf diseases detection empowered with transfer learning model
Vol 2, Issue 3, 2024
Download PDF
Abstract
The detection of leaf diseases using modern technology has significant importance in agriculture and artificial intelligence. Deep learning, specifically, plays a crucial role in this field, as it enables accurate and efficient disease classification. Early detection of leaf diseases is vital to implementing timely treatments and preventing widespread damage to leaves. Leaf diseases can be caused by various factors, including bacteria, fungi, viruses, and other pathogens. Among them, bacteria and viruses are the most invasive and can lead to substantial yield losses if not identified and treated promptly. Bacterial and viral infections are common in agricultural settings, affecting leaves of all types and ages. Our research aims to propose a transfer learning-based model for predicting leaf diseases using a dataset of leaf images. The images will be classified into healthy or diseased leaves based on extracted features. The proposed model, named Leaf Disease Transfer Learning Algorithm (LDTLA), demonstrates promising results with an average accuracy of 97.37% on the dataset. Utilizing convolutional neural networks (CNN) and deep learning techniques, our LDTLA model outperforms previous quantitative and qualitative research studies in leaf disease detection. This advanced approach to leaf disease identification holds the potential to revolutionize agriculture by enabling farmers to make informed decisions, implement targeted treatments, and minimize leaf losses caused by diseases.
Keywords
References
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhamamd Daniyal Baig, Hafiz Burhan Ul Haq, Muhammad Asif, Aqdas Tanvir
License URL: https://creativecommons.org/licenses/by/4.0

Prof. Maode Ma
Qatar University, Qatar
The field of computer and telecommunications engineering is rapidly advancing, with the following being some of the latest developments.
more
We are pleased to congratulate the first anniversiry of the journal of Computer and Telecommunication Engineering (CTE).
more
Owing to the tireless dedication of the editor-in-chief, editorial board members, and the in-house editorial team, we are proud to announce the successful online launch of the first issue of Computer and Telecommunication Engineering.
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.