A review of different structures of power amplifiers to improve linearity and efficiency

Fazel Ziraksaz

Article ID: 2305
Vol 2, Issue 1, 2024
DOI: https://doi.org/10.54517/cte.v2i1.2305
VIEWS - 3863 (Abstract)

Download PDF

Abstract

This review paper presents a comprehensive study of commonly used power amplifier (PA) structures. In recent years, with the development of modern wireless telecommunications and their dramatic challenges, new requirements are needed. In addition, some applications, like cell phones and tablets, for example, need new considerations, especially in terms of power consumption. Also, linearity is another major factor in designing a PA. Furthermore, fabrication technologies such as complementary metal-oxide semiconductors (CMOS), silicon on insulators (SOI), gallium nitride (GaN), gallium arsenide (GaAs), etc. play a crucial role in terms of power consumption. Therefore, it is necessary for PAs to meet these considerations. This paper reviews design considerations, fabrication technologies, and common PA structures, including envelope tracking (ET), envelope elimination and restoration (EER), Doherty, linear amplification with nonlinear components (LINC), feedback, and feedforward linearization techniques with their pros and cons. This review focuses on the significant achievements, techniques, structures, and characteristics of each. Also, this review focuses on the significant achievements, techniques, structures, and characteristics of each. Also, this paper tries to provide a brief overview of the various methods with the advantages and disadvantages of each. This review paper tries to make readers familiar with common structures so that readers know the advantages and disadvantages of each and choose the desired structure based on their priorities.


Keywords

power amplifier (PA); linearization technique; wireless telecommunication; envelope tracking (ET); envelope elimination and restoration (EER); Doherty; linear amplification with nonlinear components (LINC); feedback; feedforward; CMOS; SOI; GaN; GaAs


References

1. Ziraksaz F, Nabavi A. Design of a Linear Class AB Amplifier with 55dB Gain, 890MHz Bandwidth and Low Output Impedance for Envelope Tracking Supply Modulator. In: Proceedings of the 2019 27th Iranian Conference on Electrical Engineering (ICEE); 30 April-2 May 2019; Yazd, Iran. pp. 253-257. doi: 10.1109/iraniancee.2019.8786603

2. Hassan M, Larson LE, Leung VW, et al. A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications. IEEE Journal of Solid-State Circuits. 2012, 47(5): 1185-1198. doi: 10.1109/jssc.2012.2184639

3. Kahn L. Single-Sideband Transmission by Envelope Elimination and Restoration. Proceedings of the IRE. 1952, 40(7): 803-806. doi: 10.1109/jrproc.1952.273844

4. Kim JH, Son HS, Kim WY, et al. Envelope Amplifier with Multiple-Linear Regulator for Envelope Tracking Power Amplifier. IEEE Transactions on Microwave Theory and Techniques. 2013, 61(11): 3951-3960. doi: 10.1109/tmtt.2013.2281960

5. Yang SH, Chen KH, Wey CL, et al. Lossless inductor current control in envelope tracking supply modulator with self-allocation of energy for optimzation of efficiency and EVM. In: Proceedings of the 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC); 7-9 November 2016; Toyama, Japan. pp. 281-284. doi: 10.1109/ASSCC.2016.7844190

6. Paek JS, Kim D, Choo Y, et al. Design of Boosted Supply Modulator with Reverse Current Protection for Wide Battery Range in Envelope Tracking Operation. IEEE Transactions on Microwave Theory and Techniques. 2019, 67(1): 183-194. doi: 10.1109/tmtt.2018.2879323

7. Wang Y, Ruan X, Jin Q, et al. Quasi-Interleaved Current Control for Switch-Linear Hybrid Envelope-Tracking Power Supply. IEEE Transactions on Power Electronics. 2018, 33(6): 5415-5425. doi: 10.1109/tpel.2017.2735485

8. Xi H, Xu Y, Zhu Y, et al. High Bandwidth and Compact Envelope Tracking Power Supply Utilizing Switched Capacitor Topology. IEEE Access. 2019, 7: 105462-105469. doi: 10.1109/access.2019.2932607

9. Wang Y, Ruan X, Leng Y, et al. Hysteresis Current Control for Multilevel Converter in Parallel-Form Switch-Linear Hybrid Envelope Tracking Power Supply. IEEE Transactions on Power Electronics. 2019, 34(2): 1950-1959. doi: 10.1109/tpel.2018.2835640

10. He H, Ge T, Kang Y, et al. A 40 MHz Bandwidth, 91% Peak Efficiency, 2.5 W Output Power Supply Modulator With Dual-Mode Sigma–Delta Control and Adaptive Biasing Amplifier for Multistandard Communications. IEEE Transactions on Power Electronics. 2020, 35(9): 9430-9442. doi: 10.1109/tpel.2020.2969358

11. Xi H, Cao J, Liu N, et al. High Bandwidth Envelope Tracking Power Supply With Pulse Edge Independent Distribution Method. IEEE Transactions on Industrial Electronics. 2019, 66(8): 5907-5917. doi: 10.1109/tie.2018.2874580

12. Chireix H. High Power Outphasing Modulation. Proceedings of the IRE. 1935, 23(11): 1370-1392. doi: 10.1109/jrproc.1935.227299

13. Cox D. Linear Amplification with Nonlinear Components. IEEE Transactions on Communications. 1974, 22(12): 1942-1945. doi: 10.1109/tcom.1974.1092141

14. Afanasyev P, Ramabadran P, Mohammady S, et al. Phase-Only Digital Predistortion Technique for Class-E Outphasing Power Amplifiers. In: Proceedings of the 2019 European Microwave Conference in Central Europe (EuMCE); 13-15 May 2019; Prague, Czech Republic. pp. 14-17.

15. Chang HC, Roblin P, Galaviz-Aguilar JA, et al. Asymmetrically-driven current-based chireix class-F power amplifier designed using an embedding device model. In: Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS); 4-9 June 2017; Honololu, HI, USA. pp. 940-943. doi: 10.1109/mwsym.2017.8058741

16. Doherty WH. A New High Efficiency Power Amplifier for Modulated Waves. Proceedings of the IRE. 1936, 24(9): 1163-1182. doi: 10.1109/jrproc.1936.228468

17. Meng F, Sun Y, Tian L, et al. A broadband high-efficiency doherty power amplifier with continuous inverse class-F design. In: Proceedings of the 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS); 19-26 August 2017; Montreal, QC, Canada. pp. 1-3. doi: 10.23919/ursigass.2017.8105211

18. Kim J. Highly Efficient Asymmetric Class-F−1/F GaN Doherty Amplifier. IEEE Transactions on Microwave Theory and Techniques. 2018, 66(9): 4070-4077. doi: 10.1109/tmtt.2018.2839195

19. Barakat A, Thian M, Fusco V. A High-Efficiency GaN Doherty Power Amplifier With Blended Class-EF Mode and Load-Pull Technique. IEEE Transactions on Circuits and Systems II: Express Briefs. 2018, 65(2): 151-155. doi: 10.1109/tcsii.2017.2677745

20. Al-akaidi M, Daoud O, Gow J. MIMO-OFDM-based DVB-H systems: a hardware design for a PAPR reduction technique. IEEE Transactions on Consumer Electronics. 2006, 52(4): 1201-1206. doi: 10.1109/tce.2006.273134

21. Ziraksaz F. Importance of low power electronic circuit design and its impact on energy consumption. Insight-Energy Science. 2023, 6(1): 588. doi: 10.18282/i-es.v6i1.588.

22. Available online: https://www.analog.com/en/analog-dialogue/articles/rf-power-amplifiers-go-wide-and-high.html (accessed on 20 December 2023).

23. Razavi b. RF Microelectronics. Vol. 2. Prentice Hall; 2012.

24. Liu X, Jiang J, Huang C, et al. Design Techniques for High-Efficiency Envelope-Tracking Supply Modulator for 5th Generation Communication. IEEE Transactions on Circuits and Systems II: Express Briefs. 2022, 69(6): 2586-2591. doi: 10.1109/tcsii.2022.3165820

25. Available online: https://www.mpdigest.com/2019/10/23/power-amplifier-pa-designers-tackle-high-peak-to-average-power-ratio-papr-with-digital-predistortion-dpd/ (accessed on 20 December 2023).

26. Bhardwaj S, Moallemi S, Kitchen J. A Review of Hybrid Supply Modulators in CMOS Technologies for Envelope Tracking PAs. IEEE Transactions on Power Electronics. 2023, 38(5): 6036-6062. doi: 10.1109/tpel.2022.3233441

27. Raab FH, Asbeck P, Cripps S, et al. Power amplifiers and transmitters for RF and microwave. IEEE Transactions on Microwave Theory and Techniques. 2002, 50(3): 814-826. doi: 10.1109/22.989965

28. Babu A, Shivaleelavathi BG, Yatnalli V. Efficiency Analysis and Design Considerations of a Hysteretic Current Controlled Parallel Hybrid Envelope Tracking Power Supply. Engineering, Technology & Applied Science Research. 2023, 13(1): 9812-9818. doi: 10.48084/etasr.5414

29. Yerra S, Krishnamoorthy H. Multi-Phase Three-Level Buck Converter with Current Self-Balancing for High Bandwidth Envelope Tracking Power Supply. In: Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC). 15-19 March 2020; New Orleans, LA, USA. pp. 1872-1877. doi: 10.1109/apec39645.2020.9124075

30. Mukai K, Okabe H, Tanaka S. Recent progress in envelope tracking power amplifier for mobile handset systems. IEICE Transactions on Electronics. 2021; E104-C(11): 516-525. doi: 10.1587/transele.2021MMI0005

31. Choi J, Kim D, Kang D, Kim B. A new power management IC architecture for envelope tracking power amplifier. IEEE Transactions on Microwave Theory and Techniques. 2011; 59(7): 1796-1802. doi: 10.1109/TMTT.2011.2134108

32. Shrestha R, van der Zee R, de Graauw A, et al. A Wideband Supply Modulator for 20 MHz RF Bandwidth Polar PAs in 65 nm CMOS. IEEE Journal of Solid-State Circuits. 2009, 44(4): 1272-1280. doi: 10.1109/jssc.2009.2014730

33. Wang F, Kimball DF, Lie DY, et al. A Monolithic High-Efficiency 2.4-GHz 20-dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier. IEEE Journal of Solid-State Circuits. 2007, 42(6): 1271-1281. doi: 10.1109/jssc.2007.897170

34. Li Y, Lopez J, Lie DYC, et al. Circuits and System Design of RF Polar Transmitters Using Envelope-Tracking and SiGe Power Amplifiers for Mobile WiMAX. IEEE Transactions on Circuits and Systems I: Regular Papers. 2011, 58(5): 893-901. doi: 10.1109/tcsi.2010.2089562

35. Yundt GB. Series-or parallel-connected composite amplifiers. IEEE Transactions on Power Electronics. 1986; PE-1(1): 48-54. doi: 10.1109/TPEL.1986.4766276

36. Jin Q, Ruan X, Ren X, et al. Step-Wave Switched Capacitor Converter for Compact Design of Envelope Tracking Power Supply. IEEE Transactions on Industrial Electronics. 2017, 64(12): 9587-9591. doi: 10.1109/tie.2017.2716900

37. Wang W, Chen S, Cai J, et al. A Dual-Band Outphasing Power Amplifier Based on Noncommensurate Transmission Line Concept. IEEE Transactions on Microwave Theory and Techniques. 2020; 68(7): 3079-3089. doi: 10.1109/TMTT.2020.2995588

38. Liang C, Roblin P. The Analytic Doherty-Outphasing Power Amplifiers Continuum Theory : (Invited Paper). In: Proceedings of the 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON); 27-28 April 2022; Clearwater, FL, USA. pp. 1-4. doi: 10.1109/wamicon53991.2022.9786088

39. Makhsuci S, Masoumeh Navidi S, Sanduleanu M, et al. A review of Doherty power amplifier and load modulated balanced amplifier for 5G technology. International Journal of Circuit Theory and Applications. 2023, 51(5): 2422-2445. doi: 10.1002/cta.3521

40. Wang W, Chen S, Cai J, et al. A high efficiency dual‐band outphasing power amplifier design. International Journal of RF and Microwave Computer-Aided Engineering. 2020, 31(2). doi: 10.1002/mmce.22515

41. Mikrut D, Roblin P, Liang C, et al. Broadband Outphasing Power Amplifier Using Doherty-Chireix Continuum in a GaN MMIC Process. In: Proceedings of the 2023 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications; 22-25 January 2023; Las Vegas, NV, USA. pp. 13-15. doi: 10.1109/pawr56957.2023.10046288

42. Chen Y, Choi W, Shin J, et al. New Load Modulation Combiner Having a Capability of Back-Off Control for Doherty Power Amplifiers. IEEE Access. 2023, 11: 11479-11488. doi: 10.1109/access.2023.3240649

43. Oh H, Kang H, Lee H, et al. Doherty Power Amplifier Based on the Fundamental Current Ratio for Asymmetric cells. IEEE Transactions on Microwave Theory and Techniques. 2017, 65(11): 4190-4197. doi: 10.1109/tmtt.2017.2701376

44. Kang H, Lee H, Oh H, et al. Symmetric Three-Way Doherty Power Amplifier for High Efficiency and Linearity. IEEE Transactions on Circuits and Systems II: Express Briefs. 2017, 64(8): 862-866. doi: 10.1109/tcsii.2016.2609460

45. Zhou J, Chen W, Chen L, et al. 3.5-GHz High-Efficiency Broadband Asymmetric Doherty Power Amplifier for 5G Applications. In: Proceedings of the 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT); 7-11 May 2018; Chengdu, China. pp. 1-3. doi: 10.1109/icmmt.2018.8563718

46. Koo H, Kang H, Lee W, et al. GaN‐HEMT asymmetric three‐way Doherty power amplifier using GPD. IET Microwaves, Antennas & Propagation. 2018, 12(13): 2115-2121. doi: 10.1049/iet-map.2018.5464

47. Fang XH, Liu HY, Cheng KKM, et al. Two-Way Doherty Power Amplifier Efficiency Enhancement by Incorporating Transistors’ Nonlinear Phase Distortion. IEEE Microwave and Wireless Components Letters. 2018, 28(2): 168-170. doi: 10.1109/lmwc.2017.2783845

48. Barthwal A, Rawat K, Koul SK. Dual Input Digitally Controlled Broadband Three-Stage Doherty Power Amplifier With Back-Off Reconfigurability. IEEE Transactions on Circuits and Systems I: Regular Papers. 2021, 68(4): 1421-1431. doi: 10.1109/tcsi.2021.3050543

49. Choi W, Kang H, Oh H, et al. Doherty Power Amplifier Based on Asymmetric Cells With Complex Combining Load. IEEE Transactions on Microwave Theory and Techniques. 2021, 69(4): 2336-2344. doi: 10.1109/tmtt.2021.3059666

50. Choi YC, Choi W, Oh H, et al. Doherty Power Amplifier With Extended High-Efficiency Range Based on the Utilization of Multiple Output Power Back-Off Parameters. IEEE Transactions on Microwave Theory and Techniques. 2022, 70(4): 2258-2270. doi: 10.1109/tmtt.2022.3144422

51. Chen Y, Choi W, Shin J, et al. ‘Generalized expression and design method of modified load networks for Doherty power amplifier with extended back-off range. IEEE Access. 2022, 10: 77487-77497.

52. Saad P, Hou R. Symmetrical Load Modulated Balanced Power Amplifier With Asymmetrical Output Coupling for Load Modulation Continuum. IEEE Transactions on Microwave Theory and Techniques. 2022, 70(4): 2315-2327. doi: 10.1109/tmtt.2022.3147843

53. Pang J, Chu C, Wu J, et al. Broadband GaN MMIC Doherty Power Amplifier Using Continuous-Mode Combining for 5G Sub-6 GHz Applications. IEEE Journal of Solid-State Circuits. 2022, 57(7): 2143-2154. doi: 10.1109/jssc.2022.3145349

54. Shahmoradi M, Javid-Hosseini SH, Nayyeri V, et al. A Broadband Doherty Power Amplifier for Sub-6GHz 5G Applications. IEEE Access. 2023, 11: 28771-28780. doi: 10.1109/access.2023.3259906

55. Zhou X, Chan WS, Sharma T, et al. A Doherty Power Amplifier With Extended High-Efficiency Range Using Three-Port Harmonic Injection Network. IEEE Transactions on Circuits and Systems I: Regular Papers. 2022, 69(7): 2756-2766. doi: 10.1109/tcsi.2022.3160382

56. Nasri A, Estebsari M, Toofan S, et al. Broadband Class-J GaN Doherty Power Amplifier. Electronics. 2022, 11(4): 552. doi: 10.3390/electronics11040552

57. Kang SG, Lee IK, Yoo KS. Analysis and design of feedforward power amplifier. In: Proceedings of the 1997 IEEE MTT-S International Microwave Symposium Digest; 8-13 June 1997; Denver, CO, USA. pp. 1519-1522. doi: 10.1109/MWSYM.1997.596621

58. Liao HY, Chen JH, Chiou HK, Chen CC. High-linearity CMOS feedforward power amplifier for WiMAX application. In: Proceedings of the 2008 Asia-Pacific Microwave Conference; 16-20 December 2008; Hong Kong, China. pp. 1-4. doi: 10.1109/APMC.2008.4958350

59. Borel A, Barzdėnas V, Vasjanov A. Linearization as a Solution for Power Amplifier Imperfections: A Review of Methods. Electronics. 2021, 10(9): 1073. doi: 10.3390/electronics10091073

60. Dawson JL, Lee TH. Cartesian feedback for RF power amplifier linearization. In: Proceedings of the 2004 American Control Conference; 30 June-2 July 2004; Boston, MA, USA. pp. 361-366. doi: 10.23919/acc.2004.1383631

61. Dawson JL, Lee TH. Automatic phase alignment for a fully integrated cartesian feedback power amplifier system. IEEE Journal of Solid-State Circuits. 2003, 38(12): 2269-2279. doi: 10.1109/jssc.2003.819090

62. Dawson JL, Lee TH. Automatic phase alignment for a fully integrated CMOS Cartesian feedback power amplifier system. In: Proceedings of the 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC.; 13 February 2003; San Francisco, CA, USA. pp. 262-492. doi: 10.1109/ISSCC.2003.1234293

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Fazel Ziraksaz

License URL: https://creativecommons.org/licenses/by/4.0/