Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.
As China's pillar industry, the property market has suffered a considerable impact in recent years, with a decline in turnover and many developers at risk of bankruptcy. As one of the most concerned factors for stakeholders, housing prices need to be predicted more objectively and accurately to minimize decision-making errors by developers and consumers. Many prediction models in recent years have been unfriendly to consumers due to technical difficulties, high data demand, and varying factors affecting house prices in different regions. A uniform model across the country cannot capture local differences accurately, so this study compares and analyses the fitting effects of multiple machine learning models using February 2024 new building data in Changsha as an example, aiming to provide consumers with a simple and practical reference for prediction methods. The modeling exploration applies several regression techniques based on machine learning algorithms, such as Stepwise regression, Robust regression, Lasso regression, Ridge regression, Ordinary Least Squares (OLS) regression, Extreme Gradient Boosted regression (XGBoost), and Random Forest (RF) regression. These algorithms are used to construct forecasting models, and the best-performing model is selected by conducting a comparative analysis of the forecasting errors obtained between these models. The research found that machine learning is a practical approach to property price prediction, with least squares regression and Lasso regression providing relatively more convincing results.
Effect of silvicultural treatments on forest diversity and structure in temperate forests under management in Durango, Mexico
Vol 4, Issue 1, 2023
Issue release: 31 December 2023
VIEWS - 3626 (Abstract)
Download PDF
Abstract
The present study evaluated the effect of silvicultural treatments on the diversity and structure of species in temperate forest ecosystems in the Municipality of Pueblo Nuevo in the State of Durango, Mexico; it was carried out to know if forest use modifies the diversity, mixture of species, spatial distribution, and dimensional differentiation of individuals in these ecosystems. The evaluation was carried out by comparing 10 plots with management history, which were measured before the application of the treatment and five years later. The diversity indices of Shannon, Simpson and Margalef were compared, as well as indices of structure of mixture of species, spatial distribution, and dimensional differentiation. According to the silvicultural treatments applied, the values of the indices do not present significant differences in their evaluations (p> 0.05), which indicates that forest use does not modify the diversity and structure of species of the tree stratum of this plant community.
Keywords
References
1. Aguirre Calderón OA, Corral-Rivas J, Vargas Larreta B, et al. Evaluation of diversity-abundance models of the tree stratum in a cloud forest. Revista Fitotecnia Mexicana, 31(3), 281-289.
2. Aguirre O, Hui G, Gadow K, et al. (2003). An analysis of spatial forest structure using neighbourhood-based variables. Forest Ecology and Management, 183(1-3), 137-145.
3. Aguirre O, Kramer H, Jiménez J. (1998). Strukturuntersuchungen in einem Kiefern-Durchforschungsversucht Nordmexikos. Allgemeine Forst und Jagdzeitung, 168(12), 213-219.
4. Albert M, Gadow K, Kramer H. (1995). Zur Strukturbeschreibung in Duglasien-Jungbeständen am Beispiel del Versuchsflächen Manderscheid und Uslar. Allgemeine Forst und Jagdzeitung 166(11), 205-201.
5. Cano CJ. (1988). The regular management system in the forests of Mexico. Universidad Autónoma Chapingo. Division of Forestry Sciences. Subdirección de Extensión y Servicio.
6. Castellanos-Bolaños JF, Treviño-Garza EJ, Aguirre-Calderón OA, et al. (2008). Structure of Pinus patula forests under management in Ixtlán de Juárez, Oaxaca, Mexico. Madera y Bosques 14(2), 51-63.
7. Clark PJ, Evans FC. (1954). Distance to nearest neighbor as a measure of spatial relationship in populations. Ecology 35(4), 445453.
8. Corral-Rivas JJ, Vargas-Larreta B, Wehenkel C, et al (2013). Guide for the establishment, monitoring and evaluation of permanent monitoring sites in productive forest landscapes. National Forestry Commission-National Council of Science and Technology.
9. Corral Rivas JJ, Aguirre Calderón OA, Jiménez Pérez J, et al. (2005). An analysis of the effect of forest harvesting on structural diversity in the mountain mesophyll forest “El Cielo”, Tamaulipas, Mexico. Investigación Agraria: Sistemas Recursos Forestales 14(2), 217-228.
10. Corral-Rivas, JJ, Vargas Larreta B, Wehenkel C, et al. (2009). Guide for the establishment of forest and soil research sites in forests of the state of Durango. Durango, Mexico: Universidad Juárez del Estado de Durango.
11. Cox F. (1971). Dichtebestimmung und Strukturanalyse von Pflanzenpopulationen mit Hilfe von Abstandsmessungen: ein Beitrag zur methodischen Weiterentwicklung von Verfahren für Verjüngungsinventuren. Hamburg: Wiedebusch.
12. Del Río M, Montes F, Cañellas I, et al. (2003). Review: Indices of structural diversity in forest stands. Agricultural Research: Forest Resources Systems, 12(1), 159-176.
13. Franklin JF, Spies TA, Pelt RV, et al. (2002). Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forest as an example. Forest Ecology and Management, 155(1-3), 399-423.
14. Füldner K. (1995). Zur strukturbeschreibung in mischbeständen. Forstarchiv 66, 235-240.
15. Gadow KV. (1993). Zur Bestandesbeschreibung in der Forsteinrichtung. Forst und Holz, 48, 602-606.
16. Gadow KV, Hui G. (1999). Modelling forest development. Vol. 57, Part of the Forestry Sciences book series (FOSC) (pp. 26-60). Netherlands: Springer.
17. Gadow, KV, Hui G. (2002). Characterizing forest spatial structure and diversity. Proceedings of the Sustainable Forestry in Southern Sweden (SUFOR) conference “Sustainable Forestry in Temperate Regions”, Lund, April 7-9.
18. Gadow K, Hui H, Albert M. (1998). Das Winkelmaß -ein Strukturparameter zur Beschreibung der Individualverteilung in Waldbeständen. Centralblattfür das gesamte Forstwesen, 115(1), 1-9.
19. Gadow KV, Real P, Alvarez GJ. (2001). Modeling forest growth and evolution. IUFRO World Series. Vol. 12, 242 pp: International Union of Forest Research Organizations (IUFRO).
20. Gadow KV, Sánchez Orois S, Álvarez González JG. (2007). Forest Structure and Growth. Göttingen, Germany: University of Göttingen.
21. García AA, González EMS. (1998). Pinaceae of Durango. Durango, Mexico: CIIDIR-IPN, Instituto de Ecología A.C., SIVILLA and Gobierno del Estado de Durango.
22. Graciano-Ávila G, Alanís-Rodríguez E, Aguirre-Calderón OA, et al. (2020). Structural changes of arboreal vegetation in a temperate forest in Durango, Mexico. Acta Botanica Mexicana, 127: e1522.
23. Graciano JJ. (2001). Techniques for dasometric and ecological evaluation of coniferous forests under management in the Sierra Madre Occidental of south-central Durango, Mexico. Master’s thesis, Faculty of Forestry Sciences, Universidad Autónoma de Nuevo León, Linares, Nuevo León, Mexico.
24. Hernández-Salas J, Aguirre-Calderón OA, Alanís-Rodríguez E, et al. (2013). Effect of forest management on tree diversity and composition in a temperate forest of northwestern Mexico. Revista Chapingo Serie Ciencias Forestales y del Medio Ambiente, 19(3), 189-199.
25. Hui G, Pommerening A. (2014). Analysing tree species and size diversity patterns in multi-species uneven-aged forests of Northern China. Forest Ecology and Management 316: 125-138.
26. Hui G, Gadow KV. (2002). Das winkelmasstheoretischetibedegungen zum optimalen standardwinkel. Allgemeine Forstund Jagdzeitung: Allg. F. u. J. Ztg., 173 (9), 173-177.
27. National Institute of Statistics, Geography and Informatics [Inegi] (1984). Topographic map scale 1:50,000 F13-A18. El Salto, Durango, Mexico: Inegi.
28. National Institute of Statistics, Geography and Informatics [Inegi] (2009). Thematic charts of the State of Durango. Aguascalientes, Aguascalientes, Mexico: Inegi.
29. Kraft G. (1884). Beiträge zur lehre von den durchforstungen, schlagstellungen und lichtungshieben. Hannover, Germany: Verlag Keind-worth.
30. López-Hernández JA, Aguirre-Calderón OA, Alanís-Rodríguez E, et al. (2017). Forest species composition and diversity in temperate forests of Puebla, Mexico. Madera y Bosques, 23(1), 39-51. Doi: 10.21829/myb.2017.2311518.
31. Lujan-Soto JE, Corral-Rivas JJ, Aguirre-Calderón OA, et al. (2015). Grouping forest tree species on the Sierra Madre Occidental, Mexico. Allgemeine Forst und Jagdzeitung, 186(3-4), 6371.
32. Magurran AE. (1998). Ecological diversity and its measurement. Dordrecht, The Netherlands: Springer. doi 10.1007/978-94-015-7358-0.
33. Moeur M. (1993). Characterizing spatial patterns of trees using stemmapped data. Forest Science, 39(4), 756-775.
34. Mora-Donjuán CA, Buendía-Rodríguez E, Rubio-Camacho EA, et al. (2016). Spatial distribution, composition and structure of a shrubland in northeastern Mexico. Revista Fitotecnia Mexicana, 39(1), 87-95. Doi: 10.35196/rfm.2016.1.87-95.
35. Návar-Cháidez JJ, González-Elizondo S. (2009). Diversity, structure and productivity of temperate forests of Durango, Mexico. Polibotánica, 27, 71-87. Retrieved from https://www.polibotanica.mx/ojs/index.php/polibotanica/artic le/view/785/1009.
36. Ni R, Baiketuerhan Y, Zhang C, et al. (2014). Analysing structural diversity in two temperate forests in northeastern China. Forest Ecology and Management, 316: 139-147.
37. Pastorella F, Paletto A. (2013). Stand structure indices as tools to support forest management: an application in Trentino forests (Italy). Journal of Forest Science, 59: 159-168.
38. Pommerening A, Stoyan D. (2006). Edge-correction needs in estimating indices of spatial forest structure. Canadian Journal of Forest Research, 36(7), 1723-1739.
39. Ramírez Santiago R, Ángeles Pérez G, Hernández de la Rosa P, et al. (2019). Effects of forest harvesting on the structure, diversity and dynamics of mixed stands in the Sierra Juárez of Oaxaca, Mexico. Madera y Bosques, 25(3), e 2531818.
40. Ripley BD. (1979). Tests of ‘randomness’ for spatial point patterns. Journal of the Royal Statistical Society, series B, 41(3), 368-374.
41. Statistical Analysis System [SAS] (2009). User’s Guide. SAS/STAT® 9.1. SAS Institute Inc. Cary, NC, USA.
42. Smith DM, Larson BC, Kelty MJ, et al. (1996). The practice of silviculture: Applied forest ecology (9th ed.) New York, USA: John Wiley & Sons.
43. Solís Moreno R, Aguirre Calderón OA, Treviño Garza EJ, et al. (2006). Effect of two silvicultural treatments on forest ecosystem structure in Durango, Mexico. Madera y Bosques, 12(2), 49-64.
44. Zhang L, Hui G, Hu Y, et al. (2018). Spatial structural characteristics of forests dominated by Pinus tabulaeformis Carr. PLoS ONE, 13(4), e0194710. Doi: 10.1371/journal.pone.0194710.
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Edgar Silva-González, Oscar Alberto Aguirre-Calderón, Eduardo Javier Treviño-Garza, Eduardo Alanís-Rodríguez, José Javier Corral-Rivas
This work is licensed under a Creative Commons Attribution 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Prof. Mehmet Cetin
Kastamonu University,
Turkey