Modelling-based analytics for urban grand challenges

Alan Wilson

Article ID: 2625
Vol 2, Issue 4, 2024
DOI: https://doi.org/10.54517/ssd.v2i4.2625
VIEWS - 530 (Abstract)

Download PDF

Abstract

Society faces grand challenges on a number of dimensions, for example: climate change, pandemics, security and geopolitics, and social exclusion. The future development of towns and cities is key to meeting these. The availability of analytic capabilities provides foundations for developing and evaluating alternative policies and plans. An extensive range of models is available, but they have not been well-focused on these kinds of grand challenges. A significant research task, therefore, is to review the modelling developments needed to provide the necessary analytics base. We consider in turn: the building bricks; the challenge of interdependencies and high dimensionality, using Lowry’s model as a framework; the integration of the elements into a comprehensive model as a basis for grand challenge analytics; and the challenges of implementation.


Keywords

climate change; pandemics; social inclusion; security; urban modelling


References

1. Wilson AG. Entropy in urban and regional modelling. London: Pion; 1970.

2. Wilson A. Boltzmann, Lotka and Volterra and spatial structural evolution: an integrated methodology for some dynamical systems. Journal of The Royal Society Interface. 2008; 5(25): 865-871. doi: 10.1098/rsif.2007.1288

3. Lowry IS. ‘A model of metropolis’, Memorandum RM-4035-RC, (Santa Monica: Rand Corporation). Available online: https://www.rand.org/content/dam/rand/pubs/research_memoranda/2006/RM4035.pdf (accessed on 11 March 2024).

4. Echenique MH, Flowerdew ADJ, Hunt JD, et al. The MEPLAN models of Bilbao, Leeds and Dortmund. Transport Reviews. 1990; 10(4): 309-322. doi: 10.1080/01441649008716764

5. Simmonds DC. The design of the DELTA land-use modelling package. Environment and Planning, B. 2011; 26: 665-684.

6. Kim TJ, Boyce DE, Hewings GJD. Combined Input‐Output and Commodity Flow Models for Interregional Development Planning: Insights from a Korean Application. Geographical Analysis. 1983; 15(4): 330-342. doi: 10.1111/j.1538-4632.1983.tb00791.

7. Harris B, Wilson AG. Equilibrium Values and Dynamics of Attractiveness Terms in Production-Constrained Spatial-Interaction Models. Environment and Planning A: Economy and Space. 1978; 10(4): 371-388.

8. de Martinis V, Pagliara F, Wilson A. The Evolution and Planning of Hierarchical Transport Networks. Environment and Planning B: Planning and Design. 2014; 41(2): 192-210. doi: 10.1068/b39102

9. Dearden J, Wilson A. Explorations in Urban and Regional Dynamics. Abingdon: Routledge; 2015.

10. Ellam L, Girolami M, Pavliotis GA, et al. Stochastic modelling of urban structure. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018; 474(2213): 20170700. doi: 10.1098/rspa.2017.0700

11. Gaskin T, Pavliotis G, Girolami M. Neural parameter calibration for large-scale multi-agent models. arXiv. 2002; arXiv:2209.13565v1.

12. Batty M, Milton R. A new framework for very large-scale urban modelling. Urban Studies. 2021; 58(15): 3071-3094. doi: 10.1177/0042098020982252

13. Birkin M, Clarke G and Clarke M. Retail geography and intelligent network planning, Chichester, Wiley, 2002

14. Boyce DE, Williams HCWL. Forecasting urban travel, Cheltenham and Northampton. Ma.: Edward Elgar; 2015.

15. Huber F, Spiekermann K, Wegener M. Cities and climate change: a simulation model of the Ruhr area 2050. Available online: http://www.corp.at (accessed on 11 March 2024).

16. Spooner F, Abrams JF, Morrissey K, et al. A dynamic microsimulation model for epidemics. Social Science & Medicine. 2021; 291: 114461. doi: 10.1016/j.socscimed.2021.114461

17. Guo W, Gleditsch K, Wilson A. Retool AI to forecast and limit wars. Nature. 2018; 562(7727): 331-333. doi: 10.1038/d41586-018-07026-

18. Dorling D. Peak inequality: Britain’s ticking time bomb. Policy Press, Bristol; 2018.

19. Dorling D. Inequality and the 1%. In: Verso Books. London and New York; 2019.

20. Wilson AG. A generalised representation for a comprehensive urban and regional model. Computers, Environment and Urban Systems. 2007; 31(2): 148-161. doi: 10.1016/j.compenvurbsys.2006.05.001

21. Dennett A, Wilson A. A Multilevel Spatial Interaction Modelling Framework for Estimating Interregional Migration in Europe. Environment and Planning A: Economy and Space. 2013; 45(6): 1491-1507. doi: 10.1068/a45398

22. Caschili S, Wilson AG. Test of bi-proportional fitting procedure applied to international trade. In: Wilson A (editor). Geo-mathematical modelling. Wiley, Chichester; 2016. pp. 26-32.

23. Birkin M, Clarke M. Synthesis—A Synthetic Spatial Information System for Urban and Regional Analysis: Methods and Examples. Environment and Planning A: Economy and Space. 1988; 20(12): 1645-1671. doi: 10.1068/a201645

24. Smith A, Lovelace R, Birkin M. Population synthesis with Quasi random integer sampling. Journal of Artificial Societies and Social simulation. 2017; 45: 1.

25. Rees PH, Wilson AG. Spatial population analysis. London: Edward Arnold. New York: Academic Press; 1977.

26. Zhang B, Rees G, Solomon G, Wilson A. Input-output analytics for urban systems: explorations in policy and planning. In: Proceedings of the 31st Annual Geographical Information Science Research UK Conference (GISRUK2023); 19-21 April 2023; Glasgow, Scotland.

27. Pagliara F, Preston J, Simmonds D, et al. Residential location choice: models and applications. Springer, Heidelburg; 2010.

28. Pagliara F, de Bok M, Simmonds D, et al. Employment location in cities and regions: models and applications. Heidelberg: Springer; 2012.

29. Baudains P, Fry HM, Davies TP, et al. A dynamic spatial model of conflict escalation. European Journal of Applied Mathematics. 2015; 27(3): 530-553. doi: 10.1017/s0956792515000558

30. Davies T, Fry H, Wilson AG, Bishop SR. A mathematical model of the London riots and their policing. Nature Scientific Reports. 2013; 3. doi: 10.1038/srep01303

31. Medda FR, Caravelli F, Caschili S, et al. Collaborative approach to trade: enhancing connectivity in sea- and land-locked countries. Springer, Heidelberg; 2017.

32. Marchione E, Johnson SD, Wilson A. Agent-based models of piracy. In: Wilson A (editor). Geo-mathematical modelling. Wiley, Chichester; 2006. pp. 217-236.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Alan Wilson

License URL: https://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).