
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.

Dysregulation of PARP2 Contributes to Recurrent Pregnancy Loss by Modulating the Degradation and Subcellular Localization of the Long Non-Coding RNA MALAT1
Vol 37, Issue 11, 2023
Abstract
Background: Poly (ADP-ribose) polymerase (PARP) 1 and PARP2 deficiency in the uterus results in the loss of pregnancy. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1), a PARP1 binding nucleus-localized long non-coding ribonucleic acid (RNA), is downregulated in patients with recurrent pregnancy loss (RPL). However, the correlation between MALAT1 and PARPs, and their roles in RPL remain unclear. Methods: In this study, MALAT1, PARP1, and PARP2 levels were examined in the decidua from a cohort consisting of 35 patients with RPL and 15 healthy controls. The interaction between MALAT1 and PARP2 was identified in primary decidual stromal cells using a ribonucleoprotein immunoprecipitation assay and confirmed by RNA pull-down and immunofluorescence. Deoxyribonucleic acid (DNA) damage, cell viability, and apoptosis were examined by immunoblotting, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and flow cytometry in PARP2 knockdown cells. Results: MALAT1 and PARP2 levels were downregulated in patients with RPL. The messenger RNA level of PARP2 was positively correlated with MALAT1 levels (r = 0.41, p = 0.013). PARP2 bound MALAT1 close to the 3′ end and colocalizes with it in the cell nucleus. In PARP2 knockdown cells, MALAT1 was re-localized to the nucleus rim and cytoplasm and degraded more quickly. In decidual stromal cells, PARP2 knockdown led to DNA damage, decreased cell viability, and increased apoptosis. Conclusions: We identified the interaction between PARP2 and MALAT1 for the first time and constructed a correlation between MALAT1/PARP2 dysregulation and the occurrence of RPL, which provides new clues for RPL treatment.
Keywords
References
Supporting Agencies
Copyright (c) 2023 Fang Zong, Yingzi Zhao, Yanmin Cao, Qian Geng, Qinying Cao
This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Medical Genetics, University of Torino Medical School, Italy

Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy