Macrophages in the pathogenesis of psoriasis and anti-psoriatic nanotherapies

Mingmin Ni, Kaitao Wang, Yongqing Tian, Lifu Zhou, Xiaohua Yang, Mingmin Ni

Article ID: 3315
Vol 39, Issue 2, 2025
DOI: https://doi.org/10.54517/jbrha3315
Received: 17 February 2025; Accepted: 6 March 2025; Available online: 14 March 2025; Issue release: 31 March 2025


Download PDF

Abstract

Psoriasis is a common, chronic, and inflammatory skin disease. Macrophages account for about 61.3% of the inflammatory cells infiltrating psoriatic lesions. Modulating macrophage polarization, inhibiting their infiltration, and targeting the secretion of inflammatory factors and associated inflammatory pathways by these cells can alleviate psoriasis symptoms and inflammation. Moreover, nanomaterials as novel drug carriers, offer unique advantages such as large surface area, easy modification, high biocompatibility, good biodegradability, enhanced systemic adsorption, etc. Nanomaterials have great potential for efficient drug delivery and release, as well as improving therapeutic efficacy while reducing adverse effects. By systematically addressing the role of macrophages in psoriasis pathogenesis and the potential of nanomaterials in treating psoriasis through modulating macrophages, this review enhances our understanding of the disease mechanism and holds promise for novel therapeutic breakthroughs and advancements in the future treatment of psoriasis.


Keywords

psoriasis; macrophages; nanomaterials; nano-bio interaction; immunomodulation; drug delivery


References

1. Boehncke WH, Schön MP. Psoriasis. The Lancet. 2015; 386(9997): 983-994. doi: 10.1016/S0140-6736(14)61909-7

2. Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker JNWN. Psoriasis. The Lancet. 2021; 397(10281): 1301-1315. doi: 10.1016/S0140-6736(20)32549-6

3. Wang Y, Qi C, Feng F, et al. Resveratrol Ameliorates Imiquimod-Induced Psoriasis-Like Mouse Model via Reducing Macrophage Infiltration and Inhibiting Glycolysis. Journal of Inflammation Research. 2023; 16: 3823-3836. doi: 10.2147/jir.s416417

4. Leite Dantas R, Masemann D, Schied T, et al. Macrophage‐mediated psoriasis can be suppressed by regulatory T lymphocytes. The Journal of Pathology. 2016; 240(3): 366-377. doi: 10.1002/path.4786

5. Xia T, Fu S, Yang R, et al. Advances in the study of macrophage polarization in inflammatory immune skin diseases. Journal of Inflammation. 2023; 20(1). doi: 10.1186/s12950-023-00360-z

6. Greb JE, Goldminz AM, Elder JT, et al. Psoriasis. Nature Reviews Disease Primers. 2016; 2(1). doi: 10.1038/nrdp.2016.82

7. Sarma N. Evidence and Suggested Therapeutic Approach in Psoriasis of Difficult-to-treat Areas: Palmoplantar Psoriasis, Nail Psoriasis, Scalp Psoriasis, and Intertriginous Psoriasis. Indian Journal of Dermatology. 2017; 62(2): 113-122. doi: 10.4103/ijd.IJD_539_16

8. Yona S, Gordon S. From the Reticuloendothelial to Mononuclear Phagocyte System – The Unaccounted Years. Frontiers in Immunology. 2015; 6. doi: 10.3389/fimmu.2015.00328

9. Stuart LM, Ezekowitz RAB. Phagocytosis: elegant complexity. Immunity. 2005; 22(5): 539-550. doi: 10.1016/j.immuni.2005.05.002

10. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Reports. 2014; 6. doi: 10.12703/p6-13

11. Kim HJ, Jang J, Lee E, et al. Decreased expression of response gene to complement 32 in psoriasis and its association with reduced M2 macrophage polarization. The Journal of Dermatology. 2019; 46(2): 166-168. doi: 10.1111/1346-8138.14733

12. Lin SH, Chuang HY, Ho JC, et al. Treatment with TNF-α inhibitor rectifies M1 macrophage polarization from blood CD14+ monocytes in patients with psoriasis independent of STAT1 and IRF-1 activation. Journal of Dermatological Science. 2018; 91(3): 276-284. doi: 10.1016/j.jdermsci.2018.05.009

13. Sun Q, Hu S, Lou Z, et al. The macrophage polarization in inflammatory dermatosis and its potential drug candidates. Biomedicine & Pharmacotherapy. 2023; 161: 114469. doi: 10.1016/j.biopha.2023.114469

14. Sans-Fons MG, Yeramian A, Pereira-Lopes S, et al. Arginine Transport Is Impaired in C57Bl/6 Mouse Macrophages as a Result of a Deletion in the Promoter of Slc7a2 (CAT2), and Susceptibility to Leishmania Infection Is Reduced. The Journal of Infectious Diseases. 2013; 207(11): 1684-1693. doi: 10.1093/infdis/jit084

15. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. Journal of Clinical Investigation. 2012; 122(3): 787-795. doi: 10.1172/jci59643

16. Schenk M, Bouchon A, Seibold F, et al. TREM-1–expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. Journal of Clinical Investigation. 2007; 117(10): 3097-3106. doi: 10.1172/jci30602

17. Mosser DM, Edwards JP. Erratum: Exploring the full spectrum of macrophage activation. Nature Reviews Immunology. 2010; 10(6): 460-460. doi: 10.1038/nri2788

18. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology. 2011; 11(11): 723-737. doi: 10.1038/nri3073

19. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003; 19(1): 71-82. doi: 10.1016/S1074-7613(03)00174-2

20. Hanna RN, Carlin LM, Hubbeling HG, et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C− monocytes. Nature Immunology. 2011; 12(8): 778-785. doi: 10.1038/ni.2063

21. Ge H, Mao Y, Chen W, et al. Stress aggravates imiquimod-induced psoriasiform inflammation by promoting M1 macrophage polarization. International Immunopharmacology. 2023; 124: 110899. doi: 10.1016/j.intimp.2023.110899

22. Lu CH, Lai CY, Yeh DW, et al. Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation. Mediators of Inflammation. 2018; 2018: 1-14. doi: 10.1155/2018/3523642

23. Lu Y, Zhu W, Zhang GX, et al. Adenosine A2A receptor activation regulates the M1 macrophages activation to initiate innate and adaptive immunity in psoriasis. Clinical Immunology. 2024; 266: 110309. doi: 10.1016/j.clim.2024.110309

24. Oh-Oka K, Sugaya M, Takahashi N, et al. CD96 Blockade Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis via Suppression of IL-17A Production by Dermal γδ T Cells. The Journal of Immunology. 2022. doi: 10.4049/jimmunol.1601607

25. Liu Y, Qin G, Meng Z, et al. IL-1β, IL-17A and combined phototherapy predicts higher while previous systemic biologic treatment predicts lower treatment response to etanercept in psoriasis patients. Inflammopharmacology. 2018; 27(1): 57-66. doi: 10.1007/s10787-018-0530-9

26. Ciesla M, Kolarz B, Majdan M, et al. POS0191 the value of mir-20B, MIR-22, MIR-26A, MIR-125B AND MIR-221 in rheumatoid arthritis. Annals of the Rheumatic Diseases. 2021; 80: 309-310. doi: 10.1136/annrheumdis-2021-eular.443

27. Yang X, Zhao Q, Wang X, et al. Investigation of Clostridium butyricum on atopic dermatitis based on gut microbiota and TLR4/MyD88/ NF-κB signaling pathway. Technology and Health Care; 2025.

28. Grine L, Dejager L, Libert C, et al. An inflammatory triangle in psoriasis: TNF, type I IFNs and IL-17. Cytokine & Growth Factor Reviews. 2015; 26(1): 25-33. doi: 10.1016/j.cytogfr.2014.10.009

29. Brembilla NC, Senra L, Boehncke WH. The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Frontiers in Immunology. 2018; 9. doi: 10.3389/fimmu.2018.01682

30. von Stebut E, Boehncke WH, Ghoreschi K, et al. IL-17A in Psoriasis and Beyond: Cardiovascular and Metabolic Implications. Frontiers in Immunology. 2020; 10. doi: 10.3389/fimmu.2019.03096

31. Fischer-Riepe L, Daber N, Schulte-Schrepping J, et al. CD163 expression defines specific, IRF8-dependent, immune-modulatory macrophages in the bone marrow. Journal of Allergy and Clinical Immunology. 2020.

32. Mahil SK, Capon F, Barker JN. Update on psoriasis immunopathogenesis and targeted immunotherapy. Seminars in Immunopathology. 2015; 38(1): 11-27. doi: 10.1007/s00281-015-0539-8

33. Zaba LC, Cardinale I, Gilleaudeau P, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. The Journal of Experimental Medicine. 2007; 204(13): 3183-3194. doi: 10.1084/jem.20071094

34. Ward NL, Loyd CM, Wolfram JA, et al. Depletion of antigen-presenting cells by clodronate liposomes reverses the psoriatic skin phenotype in KC-Tie2 mice. British Journal of Dermatology. 2011; 164(4): 750-758. doi: 10.1111/j.1365-2133.2010.10129.x

35. Nguyen CTH, Kambe N, Yamazaki F, et al. Up-regulated expression of CD86 on circulating intermediate monocytes correlated with disease severity in psoriasis. Journal of Dermatological Science. 2018; 90(2): 135-143. doi: 10.1016/j.jdermsci.2018.01.005

36. Golden JB, Groft SG, Squeri MV, et al. Chronic Psoriatic Skin Inflammation Leads to Increased Monocyte Adhesion and Aggregation. The Journal of Immunology. 2015; 195(5): 2006-2018. doi: 10.4049/jimmunol.1402307

37. Wang H, Peters T, Sindrilaru A, et al. Key Role of Macrophages in the Pathogenesis of CD18 Hypomorphic Murine Model of Psoriasis. Journal of Investigative Dermatology. 2009; 129(5): 1100-1114. doi: 10.1038/jid.2009.43

38. Sa SM, Valdez PA, Wu J, et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. The Journal of Immunology. 2007; 178(11): 7487-7487. doi: 10.4049/jimmunol.178.11.7487-a

39. Fonseca-Camarillo G, Furuzawa-Carballeda J, Llorente L, et al. IL-10— and IL-20—Expressing Epithelial and Inflammatory Cells are Increased in Patients with Ulcerative Colitis. Journal of Clinical Immunology. 2012; 33(3): 640-648. doi: 10.1007/s10875-012-9843-4

40. Wang L, Yang L, Gao L, et al. A functional promoter polymorphism in monocyte chemoattractant protein‐1 is associated with psoriasis. International Journal of Immunogenetics. 2007; 35(1): 45-49. doi: 10.1111/j.1744-313x.2007.00734.x

41. Wang H. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. Journal of Clinical Investigation. 2006; 116(8): 2105-2114. doi: 10.1172/jci27180

42. Zhu Y, Wu Z, Yan W, et al. Allosteric inhibition of SHP2 uncovers aberrant TLR7 trafficking in aggravating psoriasis. EMBO Molecular Medicine. 2021; 14(3). doi: 10.15252/emmm.202114455

43. Kim J, Krueger JG. The Immunopathogenesis of Psoriasis. Dermatologic Clinics. 2015; 33(1): 13-23. doi: 10.1016/j.det.2014.09.002

44. Kuraitis D, Rosenthal N, Boh E, et al. Macrophages in dermatology: pathogenic roles and targeted therapeutics. Archives of Dermatological Research. 2021; 314(2): 133-140. doi: 10.1007/s00403-021-02207-0

45. Paulnock DM. Macrophage activation by T cells. Current Opinion in Immunology. 1992; 4(3): 344-349. doi: 10.1016/0952-7915(92)90087-U

46. Fuentes-Duculan J, Suárez-Fariñas M, Zaba LC, et al. A Subpopulation of CD163-Positive macrophages is classically activated in psoriasis. Journal of Investigative Dermatology. 2010; 130(10): 2412-2422. doi: 10.1038/jid.2010.165

47. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nature Reviews Immunology. 2014; 14(6): 417-428. doi: 10.1038/nri3683

48. Lim H, Yo S, Lee M, et al. Potential inhibitory effects of the traditional herbal prescription Hyangso-san against skin inflammation via inhibition of chemokine production and inactivation of STAT1 in HaCaT keratinocytes. Molecular Medicine Reports. 2017; 17(2): 2515-2522. doi: 10.3892/mmr.2017.8172

49. Park CH, Min SY, Yu HW, et al. Effects of Apigenin on RBL-2H3, RAW264.7, and HaCaT Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities. International Journal of Molecular Sciences. 2020; 21(13): 4620. doi: 10.3390/ijms21134620

50. Li R, Xiong Y, Ma L, et al. Neutrophil extracellular traps promote macrophage inflammation in psoriasis. Clinical Immunology. 2024; 266: 110308. doi: 10.1016/j.clim.2024.110308

51. Hetru C, Hoffmann JA. NF- B in the Immune Response of Drosophila. Cold Spring Harbor Perspectives in Biology. 2009; 1(6): a000232-a000232. doi: 10.1101/cshperspect.a000232

52. Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy. 2017; 2(1). doi: 10.1038/sigtrans.2017.23

53. Cildir G, Low KC, Tergaonkar V. Noncanonical NF-κB Signaling in Health and Disease. Trends in Molecular Medicine. 2016; 22(5): 414-429. doi: 10.1016/j.molmed.2016.03.002

54. Alcamo E, Hacohen N, Schulte LC, et al. Requirement for the NF-κB Family Member RelA in the Development of Secondary Lymphoid Organs. The Journal of Experimental Medicine. 2002; 195(2): 233-244. doi: 10.1084/jem.20011885

55. Hayden MS, Ghosh S. Shared Principles in NF-κB Signaling. Cell. 2008; 132(3): 344-362. doi: 10.1016/j.cell.2008.01.020

56. Schröfelbauer B, Polley S, Behar M, et al. NEMO Ensures Signaling Specificity of the Pleiotropic IKKβ by Directing Its Kinase Activity toward IκBα. Molecular Cell. 2012; 47(1): 111-121. doi: 10.1016/j.molcel.2012.04.020

57. Oeckinghaus A, Ghosh S. The NF- B Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology. 2009; 1(4): a000034-a000034. doi: 10.1101/cshperspect.a000034

58. Gao S, Mao F, Zhang B, et al. Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-κB and signal transducer and activator of transcription 3 pathways. Experimental Biology and Medicine. 2014; 239(3): 366-375. doi: 10.1177/1535370213518169

59. Takuathung MN, Potikanond S, Sookkhee S, et al. Anti-psoriatic and anti-inflammatory effects of Kaempferia parviflora in keratinocytes and macrophage cells. Biomedicine & Pharmacotherapy. 2021; 143: 112229. doi: 10.1016/j.biopha.2021.112229

60. Chen XX, Tang L, Fu YM, et al. Paralemmin-3 contributes to lipopolysaccharide-induced inflammatory response and is involved in lipopolysaccharide-Toll-like receptor-4 signaling in alveolar macrophages. International Journal of Molecular Medicine. 2017; 40(6): 1921-1931. doi: 10.3892/ijmm.2017.3161

61. Sae-Wong C, Matsuda H, Tewtrakul S, et al. Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. Journal of Ethnopharmacology. 2011; 136(3): 488-495. doi: 10.1016/j.jep.2011.01.013

62. Tewtrakul S, Subhadhirasakul S. Effects of compounds from Kaempferia parviflora on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha productions in RAW264.7 macrophage cells. Journal of Ethnopharmacology. 2008; 120(1): 81-84. doi: 10.1016/j.jep.2008.07.033

63. Thatikonda S, Pooladanda V, Sigalapalli DK, et al. Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation. Cell Death & Disease. 2020; 11(1). doi: 10.1038/s41419-019-2212-y

64. Wang W, Qu R, Wang X, et al. GDF11 Antagonizes Psoriasis-like Skin Inflammation via Suppression of NF-κB Signaling Pathway. Inflammation. 2018; 42(1): 319-330. doi: 10.1007/s10753-018-0895-3

65. Shangguan Y, Chen Y, Ma Y, et al. Salubrinal protects against inflammatory response in macrophage and attenuates psoriasiform skin inflammation by antagonizing NF-κB signaling pathway. Biochemical and Biophysical Research Communications. 2022; 589: 63-70. doi: 10.1016/j.bbrc.2021.11.066

66. Catharino A, Daiha E, Carvalho C, et al. Possible correlations between annular pustular psoriasis and Noonan syndrome. Journal of the European Academy of Dermatology and Venereology. 2015; 30(12). doi: 10.1111/jdv.13521

67. Meng Q, Bai M, Guo M, et al. Inhibition of Serum- and Glucocorticoid-Regulated Protein Kinase-1 Aggravates Imiquimod-Induced Psoriatic Dermatitis and Enhances Proinflammatory Cytokine Expression through the NF-kB Pathway. Journal of Investigative Dermatology. 2023; 143(6): 954-964. doi: 10.1016/j.jid.2022.12.013

68. Welters ID, Fimiani C, Bilfinger TV, et al. NF- κ B, nitric oxide and opiate signaling. Medical Hypotheses. 2000; 54(2): 263-268. doi: 10.1054/mehy.1999.0032

69. Xu N, Yuan H, Liu W, et al. Activation of RAW264.7 mouse macrophage cells in vitro through treatment with recombinant ricin toxin-binding subunit B: Involvement of protein tyrosine, NF-κB and JAK-STAT kinase signaling pathways. International Journal of Molecular Medicine. 2013; 32(3): 729-735. doi: 10.3892/ijmm.2013.1426

70. Funes SC, Rios M, Escobar‐Vera J, et al. Implications of macrophage polarization in autoimmunity. Immunology. 2018; 154(2): 186-195. doi: 10.1111/imm.12910

71. Liu Y, Liu Z, Tang H, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA. American Journal of Physiology-Cell Physiology. 2019; 317(4): C762-C775. doi: 10.1152/ajpcell.00212.2019

72. Ren J, Han X, Lohner H, et al. Serum- and Glucocorticoid-Inducible Kinase 1 Promotes Alternative Macrophage Polarization and Restrains Inflammation through FoxO1 and STAT3 Signaling. The Journal of Immunology. 2021; 207(1): 268-280. doi: 10.4049/jimmunol.2001455

73. Li L, Zhang H yu, Zhong X qin, et al. PSORI-CM02 formula alleviates imiquimod-induced psoriasis via affecting macrophage infiltration and polarization. Life Sciences. 2020; 243: 117231. doi: 10.1016/j.lfs.2019.117231

74. Ma Y, Kim BH, Yun SK, et al. Centipeda minima Extract Inhibits Inflammation and Cell Proliferation by Regulating JAK/STAT Signaling in Macrophages and Keratinocytes. Molecules. 2023; 28(4): 1723. doi: 10.3390/molecules28041723

75. Li X, Jiang M, Chen X, et al. Etanercept alleviates psoriasis by reducing the Th17/Treg ratio and promoting M2 polarization of macrophages. Immunity, Inflammation and Disease. 2022; 10(12). doi: 10.1002/iid3.734

76. Hou Y, Zhu L, Tian H, et al. IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis. Protein & Cell. 2018; 9(12): 1027-1038. doi: 10.1007/s13238-018-0505-z

77. Reich K, Papp KA, Blauvelt A, et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. The Lancet. 2017; 390(10091): 276-288. doi: 10.1016/S0140-6736(17)31279-5

78. Jiang BH, Liu LZ. PI3K/PTEN Signaling in Angiogenesis and Tumorigenesis. Advances in Cancer Research. 2009; 102: 19-65. doi: 10.1016/S0065-230X(09)02002-8

79. He Y, Sun MM, Zhang GG, et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduction and Targeted Therapy. 2021; 6(1). doi: 10.1038/s41392-021-00828-5

80. Murthy SS, Tosolini A, Taguchi T, et al. Mapping of AKT3, encoding a member of the Akt/protein kinase B family, to human and rodent chromosomes by fluorescence in situ hybridization. Cytogenetic and Genome Research. 2000; 88(1-2): 38-40. doi: 10.1159/000015481

81. Xue C, Li G, Lu J, et al. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduction and Targeted Therapy. 2021; 6(1). doi: 10.1038/s41392-021-00788-w

82. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. Journal of Cellular and Molecular Medicine. 2005; 9(1): 59-71. doi: 10.1111/j.1582-4934.2005.tb00337.x

83. Luyendyk JP, Schabbauer GA, Tencati M, et al. Genetic Analysis of the Role of the PI3K-Akt Pathway in Lipopolysaccharide-Induced Cytokine and Tissue Factor Gene Expression in Monocytes/Macrophages. The Journal of Immunology. 2008; 180(6): 4218-4226. doi: 10.4049/jimmunol.180.6.4218

84. Weichhart T, Säemann MD. The multiple facets of mTOR in immunity. Trends in Immunology. 2009; 30(5): 218-226. doi: 10.1016/j.it.2009.02.002

85. Arranz A, Doxaki C, Vergadi E, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proceedings of the National Academy of Sciences. 2012; 109(24): 9517-9522. doi: 10.1073/pnas.1119038109

86. Vergadi E, Ieronymaki E, Lyroni K, et al. Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. The Journal of Immunology. 2017; 198(3): 1006-1014. doi: 10.4049/jimmunol.1601515

87. Gu S, Dai H, Zhao X, et al. AKT3 deficiency in M2 macrophages impairs cutaneous wound healing by disrupting tissue remodeling. Aging. 2020; 12(8): 6928-6946. doi: 10.18632/aging.103051

88. Chamcheu JC, Pal HC, Siddiqui IA, et al. Prodifferentiation, Anti-Inflammatory and Antiproliferative Effects of Delphinidin, a Dietary Anthocyanidin, in a Full-Thickness Three-Dimensional Reconstituted Human Skin Model of Psoriasis. Skin Pharmacology and Physiology. 2015; 28(4): 177-188. doi: 10.1159/000368445

89. Buerger C, Malisiewicz B, Eiser A, et al. Mammalian target of rapamycin and its downstream signalling components are activated in psoriatic skin. British Journal of Dermatology. 2013; 169(1): 156-159. doi: 10.1111/bjd.12271

90. Rosenberger C, Solovan C, Rosenberger AD, et al. Upregulation of Hypoxia-Inducible Factors in Normal and Psoriatic Skin. Journal of Investigative Dermatology. 2007; 127(10): 2445-2452. doi: 10.1038/sj.jid.5700874

91. Huang T, Lin X, Meng X, et al. Phosphoinositide-3 Kinase/Protein Kinase-B/Mammalian Target of Rapamycin Pathway in Psoriasis Pathogenesis. A Potential Therapeutic Target? Acta Dermato Venereologica. 2014; 94(4): 371-379. doi: 10.2340/00015555-1737

92. Jiang Z, Zhang Y, Zhang Y, et al. Cancer Derived Exosomes Induce Macrophages Immunosuppressive Polarization to Promote Bladder Cancer Progression. Cell Commun Signal. 2021; 19: 93. doi: 10.1186/s12964-021-00768-1

93. Jeon H, Oh S, Kum E, et al. Immunomodulatory Effects of an Aqueous Extract of Black Radish on Mouse Macrophages via the TLR2/4-Mediated Signaling Pathway. Pharmaceuticals. 2022; 15(11): 1376. doi: 10.3390/ph15111376

94. Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science. 2018; 361(6403): 704-709. doi: 10.1126/science.aat1022

95. Andreeva L, Hiller B, Kostrewa D, et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature. 2017; 549(7672): 394-398. doi: 10.1038/nature23890

96. Decout A, Katz JD, Venkatraman S, et al. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology. 2021; 21(9): 548-569. doi: 10.1038/s41577-021-00524-z

97. Pan J, Fei C, Hu Y, et al. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zoological Research. 2023; 44(1): 183-218. doi: 10.24272/j.issn.2095-8137.2022.464

98. Samson N, Ablasser A. The cGAS–STING pathway and cancer. Nature Cancer. 2022; 3(12): 1452-1463. doi: 10.1038/s43018-022-00468-w

99. Chen C, Xu P. Cellular functions of cGAS-STING signaling. Trends in Cell Biology. 2023; 33(8): 630-648. doi: 10.1016/j.tcb.2022.11.001

100. Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nature Reviews Molecular Cell Biology. 2020; 21(9): 501-521. doi: 10.1038/s41580-020-0244-x

101. Pan Y, You Y, Sun L, et al. The STING antagonist H‐151 ameliorates psoriasis via suppression of STING/NF‐κB‐mediated inflammation. British Journal of Pharmacology. 2021; 178(24): 4907-4922. doi: 10.1111/bph.15673

102. Zhang Z, Zhou D, Li Z, et al. A Nanoinhibitor Targeting cGAS‐STING Pathway to Reverse the Homeostatic Imbalance of Inflammation in Psoriasis. Angewandte Chemie. 2023; 136(2). doi: 10.1002/ange.202316007

103. Johansen C, Kragballe K, Westergaard M, et al. The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. British Journal of Dermatology. 2005; 152(1): 37-42. doi: 10.1111/j.1365-2133.2004.06304.x

104. Takahashi H, Ibe M, Nakamura S, et al. Extracellular regulated kinase and c-Jun N-terminal kinase are activated in psoriatic involved epidermis. Journal of Dermatological Science. 2002; 30(2): 94-99. doi: 10.1016/S0923-1811(02)00064-6

105. Funding AT, Johansen C, Kragballe K, et al. Mitogen- and Stress-Activated Protein Kinase 2 and Cyclic AMP Response Element Binding Protein are Activated in Lesional Psoriatic Epidermis. Journal of Investigative Dermatology. 2007; 127(8): 2012-2019. doi: 10.1038/sj.jid.5700821

106. Mavropoulos A, Rigopoulou EI, Liaskos C, et al. The Role of p38 MAPK in the Aetiopathogenesis of Psoriasis and Psoriatic Arthritis. Clinical and Developmental Immunology. 2013; 2013: 1-8. doi: 10.1155/2013/569751

107. Fu J, Zeng Z, Zhang L, et al. 4’-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways. Brazilian Journal of Medical and Biological Research. 2020; 53(12): e10109. doi: 10.1590/1414-431X202010109

108. Rønholt K, Nielsen ALL, Johansen C, et al. IL-37 Expression Is Downregulated in Lesional Psoriasis Skin. ImmunoHorizons. 2020; 4(11): 754-761. doi: 10.4049/immunohorizons.2000083

109. Zhao W, Xiao S, Li H, et al. MAPK Phosphatase-1 Deficiency Exacerbates the Severity of Imiquimod-Induced Psoriasiform Skin Disease. Frontiers in Immunology. 2018; 9. doi: 10.3389/fimmu.2018.00569

110. He Q, Chen H, Li W, et al. IL-36 cytokine expression and its relationship with p38 MAPK and NF-κB pathways in psoriasis vulgaris skin lesions. Journal of Huazhong University of Science and Technology. 2013; 33(4): 594-599. doi: 10.1007/s11596-013-1164-1

111. Matsumoto M, Tanaka T, Kaisho T, et al. A Novel LPS-Inducible C-Type Lectin Is a Transcriptional Target of NF-IL6 in Macrophages. The Journal of Immunology. 1999; 163(9): 5039-5048. doi: 10.4049/jimmunol.163.9.5039

112. Tan R, Zhong X, Han R, et al. Macrophages mediate psoriasis via Mincle-dependent mechanism in mice. Cell Death Discovery. 2023; 9(1). doi: 10.1038/s41420-023-01444-8

113. Liu Y, Chen J, Zhang Z, et al. NLRP3 inflammasome activation mediates radiation-induced pyroptosis in bone marrow-derived macrophages. Cell Death & Disease. 2017; 8(2): e2579-e2579. doi: 10.1038/cddis.2016.460

114. Miglio G, Veglia E, Fantozzi R. Fumaric acid esters prevent the NLRP3 inflammasome-mediated and ATP-triggered pyroptosis of differentiated THP-1 cells. International Immunopharmacology. 2015; 28(1): 215-219. doi: 10.1016/j.intimp.2015.06.011

115. Jo EK, Kim JK, Shin DM, et al. Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology. 2015; 13(2): 148-159. doi: 10.1038/cmi.2015.95

116. Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunological Reviews. 2015; 265(1): 35-52. doi: 10.1111/imr.12286

117. Guo W, Liu W, Chen Z, et al. Tyrosine phosphatase SHP2 negatively regulates NLRP3 inflammasome activation via ANT1-dependent mitochondrial homeostasis. Nature Communications. 2017; 8(1). doi: 10.1038/s41467-017-02351-0

118. Deng G, Chen W, Wang P, et al. Inhibition of NLRP3 inflammasome-mediated pyroptosis in macrophage by cycloastragenol contributes to amelioration of imiquimod-induced psoriasis-like skin inflammation in mice. International Immunopharmacology. 2019; 74: 105682. doi: 10.1016/j.intimp.2019.105682

119. Syed SN, Weigert A, Brüne B. Sphingosine Kinases are Involved in Macrophage NLRP3 Inflammasome Transcriptional Induction. International Journal of Molecular Sciences. 2020; 21(13): 4733. doi: 10.3390/ijms21134733

120. Gaire BP, Lee CH, Kim W, et al. Lysophosphatidic Acid Receptor 5 Contributes to Imiquimod-Induced Psoriasis-Like Lesions through NLRP3 Inflammasome Activation in Macrophages. Cells. 2020; 9(8): 1753. doi: 10.3390/cells9081753

121. Balasubramanian S, Eckert R. Keratinocyte proliferation, differentiation, and apoptosis—Differential mechanisms of regulation by curcumin, EGCG and apigenin. Toxicology and Applied Pharmacology. 2007; 224(3): 214-219. doi: 10.1016/j.taap.2007.03.020

122. Hsu S, Yamamoto T, Borke J, et al. Green Tea Polyphenol-Induced Epidermal Keratinocyte Differentiation Is Associated with Coordinated Expression of p57/KIP2 and Caspase 14. The Journal of Pharmacology and Experimental Therapeutics. 2005; 312(3): 884-890. doi: 10.1124/jpet.104.076075

123. Chamcheu JC, Siddiqui IA, Adhami VM, et al. Chitosan-based nanoformulated (– )-epigallocatechin-3-gallate (EGCG) modulates human keratinocyte-induced responses and alleviates imiquimod-induced murine psoriasiform dermatitis. International Journal of Nanomedicine. 2018; 13: 4189-4206. doi: 10.2147/ijn.s165966

124. Lee WR, Chou WL, Lin ZC, et al. Laser-assisted nanocarrier delivery to achieve cutaneous siRNA targeting for attenuating psoriasiform dermatitis. Journal of Controlled Release. 2022; 347: 590-606. doi: 10.1016/j.jconrel.2022.05.032

125. Jiang Q, Wei B, You M, et al. d-mannose blocks the interaction between keratinocytes and Th17 cells to alleviate psoriasis by inhibiting HIF-1α/CCL20 in mice. International Immunopharmacology. 2023; 118: 110087. doi: 10.1016/j.intimp.2023.110087

126. Szeto A, Sun-Suslow N, Mendez AJ, et al. Regulation of the macrophage oxytocin receptor in response to inflammation. American Journal of Physiology-Endocrinology and Metabolism. 2017; 312(3): E183-E189. doi: 10.1152/ajpendo.00346.2016

127. Chiang CC, Cheng WJ, Korinek M, et al. Neutrophils in Psoriasis. Frontiers in Immunology. 2019; 10. doi: 10.3389/fimmu.2019.02376

128. Hayakawa N, Noguchi M, Takeshita S, et al. Structure–activity relationship study, target identification, and pharmacological characterization of a small molecular IL-12/23 inhibitor, APY0201. Bioorganic & Medicinal Chemistry. 2014; 22(11): 3021-3029. doi: 10.1016/j.bmc.2014.03.036

129. Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000; 13(5): 715-725. doi: 10.1016/S1074-7613(00)00070-4

130. Luu M, Binder K, Hartmann S, et al. Transcription factor c-Rel mediates communication between commensal bacteria and mucosal lymphocytes. Journal of Leukocyte Biology. 2021; 111(5): 1001-1007. doi: 10.1002/jlb.3ab0621-350r

131. Chenoweth DM, Harki DA, Dervan PB. Solution-Phase Synthesis of Pyrrole−Imidazole Polyamides. Journal of the American Chemical Society. 2009; 131(20): 7175-7181. doi: 10.1021/ja901307m

132. Armstrong AW, Read C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis. JAMA. 2020; 323(19): 1945. doi: 10.1001/jama.2020.4006

133. Setten RL, Rossi JJ, Han S ping. The current state and future directions of RNAi-based therapeutics. Nature Reviews Drug Discovery. 2019; 18(6): 421-446. doi: 10.1038/s41573-019-0017-4

134. Tong L, Zhao Q, Datan E, et al. Triptolide: reflections on two decades of research and prospects for the future. Natural Product Reports. 2020; 38(4): 843-860. doi: 10.1039/d0np00054j

135. Silvestrini AVP, Garcia Praça F, Leite MN, et al. Liquid crystalline nanoparticles enable a multifunctional approach for topical psoriasis therapy by co-delivering triptolide and siRNAs. International Journal of Pharmaceutics. 2023; 640: 123019. doi: 10.1016/j.ijpharm.2023.123019

136. Joseph SB, Castrillo A, Laffitte BA, et al. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nature Medicine. 2003; 9(2): 213-219. doi: 10.1038/nm820

137. Gadde S, Even‐Or O, Kamaly N, et al. Development of Therapeutic Polymeric Nanoparticles for the Resolution of Inflammation. Advanced Healthcare Materials. 2014; 3(9): 1448-1456. doi: 10.1002/adhm.201300688

138. Ng CY, Huang YH, Chu CF, et al. Risks for Staphylococcus aureus colonization in patients with psoriasis: a systematic review and meta-analysis. British Journal of Dermatology. 2017; 177(4): 967-977. doi: 10.1111/bjd.15366

139. Boyles MSP, Kristl T, Andosch A, et al. Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components. Journal of Nanobiotechnology. 2015; 13(1). doi: 10.1186/s12951-015-0146-9

140. Yu X, Yi H, Guo C, et al. Pattern recognition scavenger receptor CD204 attenuates Toll-like receptor 4-induced NF-kappaB activation by directly inhibiting ubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6. Journal of Biological Chemistry. 2011; 286(21): 18795-18806. doi: 10.1074/jbc.M111.224345

141. Yi H, Xu X, Gao P, et al. Pattern recognition scavenger receptor SRA/CD204 down-regulates Toll-like receptor 4 signaling-dependent CD8 T-cell activation. Blood. 2009; 113(23): 5819-5828. doi: 10.1182/blood-2008-11-190033

142. Ojewole JAO. Antinociceptive, anti-inflammatory and antidiabetic properties of Hypoxis hemerocallidea Fisch. & C.A. Mey. (Hypoxidaceae) corm [‘African Potato’] aqueous extract in mice and rats. Journal of Ethnopharmacology. 2006; 103(1): 126-134. doi: 10.1016/j.jep.2005.07.012

143. Gautam A, Dixit S, Embers M, et al. Different Patterns of Expression and of IL-10 Modulation of Inflammatory Mediators from Macrophages of Lyme Disease-Resistant and-Susceptible Mice. Stevenson B, ed. PLoS ONE. 2012; 7(9): e43860. doi: 10.1371/journal.pone.0043860

144. Kumar S, Shukla R, Ranjan P, et al. Interleukin-10: A Compelling Therapeutic Target in Patients With Irritable Bowel Syndrome. Clinical Therapeutics. 2017; 39(3): 632-643. doi: 10.1016/j.clinthera.2017.01.030

145. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. Journal of Nanobiotechnology. 2011; 9(1): 55. doi: 10.1186/1477-3155-9-55

146. Xiao RZ, Zeng ZW, Zhou GL, et al. Recent advances in PEG-PLA block copolymer nanoparticles. International Journal of Nanomedicine. 2010; 5: 1057-1065. doi: 10.2147/IJN.S14912

147. Kim K, Yu M, Zong X, et al. Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications. Biomaterials. 2003; 24(27): 4977-4985. doi: 10.1016/S0142-9612(03)00407-1

148. Duncan SA, Dixit S, Sahu R, et al. Prolonged Release and Functionality of Interleukin-10 Encapsulated within PLA-PEG Nanoparticles. Nanomaterials. 2019; 9(8): 1074. doi: 10.3390/nano9081074

149. Rajendrakumar SK, Revuri V, Samidurai M, et al. Peroxidase-Mimicking Nanoassembly Mitigates Lipopolysaccharide-Induced Endotoxemia and Cognitive Damage in the Brain by Impeding Inflammatory Signaling in Macrophages. Nano Letters. 2018; 18(10): 6417-6426. doi: 10.1021/acs.nanolett.8b02785

150. Chua RA, Arbiser JL, Chua RA, et al. The role of angiogenesis in the pathogenesis of psoriasis. Autoimmunity. 2009; 42(7): 574-579. doi: 10.1080/08916930903002461

151. Young HS, Summers AM, Read IR, et al. Interaction between genetic control of vascular endothelial growth factor production and retinoid responsiveness in psoriasis. Journal of Investigative Dermatology. 2006; 126(2): 453-459. doi: 10.1038/sj.jid.5700096

152. Xia YP, Li B, Hylton D, et al. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood. 2003; 102(1): 161-168. doi: 10.1182/blood-2002-12-3793

153. Schonthaler HB, Huggenberger R, Wculek SK, et al. Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis. Proceedings of the National Academy of Sciences. 2009; 106(50): 21264-21269. doi: 10.1073/pnas.0907550106

154. Roy B, Das A, Ashish K, et al. Neuropathy with vascular endothelial growth factor receptor tyrosine kinase inhibitors. Neurology. 2019; 93(2). doi: 10.1212/wnl.0000000000007743

155. Kunstfeld R, Hirakawa S, Hong YK, et al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood. 2004; 104(4): 1048-1057. doi: 10.1182/blood-2003-08-2964

156. Hvid H, Teige I, Kvist PH, et al. TPA induction leads to a Th17-like response in transgenic K14/VEGF mice: a novel in vivo screening model of psoriasis. International Immunology. 2008; 20(8): 1097-1106. doi: 10.1093/intimm/dxn068

157. Sun H, Zhao Y, Zhang P, et al. Transcutaneous delivery of mung bean-derived nanoparticles for amelioration of psoriasis-like skin inflammation. Nanoscale. 2022; 14(8): 3040-3048. doi: 10.1039/d1nr08229a

158. Boldeiu A, Simion M, Mihalache I, et al. Comparative analysis of honey and citrate stabilized gold nanoparticles: In vitro interaction with proteins and toxicity studies. Journal of Photochemistry and Photobiology B: Biology. 2019; 197: 111519. doi: 10.1016/j.jphotobiol.2019.111519

159. Erdogan MA, Erdogan A, Erbas O. The Anti-Seizure Effect of Liraglutide on Ptz-Induced Convulsions Through its Anti-Oxidant and Anti-Inflammatory Properties. Neurochemical Research. 2022; 48(1): 188-195. doi: 10.1007/s11064-022-03736-4

160. Subramanian AP, John AA, Vellayappan MV, et al. Honey and its Phytochemicals: Plausible Agents in Combating Colon Cancer through its Diversified Actions. Journal of Food Biochemistry. 2016; 40(4): 613-629. doi: 10.1111/jfbc.12239

161. Zhang L, Virgous C, Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. The Journal of Nutritional Biochemistry. 2019; 69: 19-30. doi: 10.1016/j.jnutbio.2019.03.009

162. Navaei‐Alipour N, Mastali M, Ferns GA, et al. The effects of honey on pro‐ and anti‐inflammatory cytokines: A narrative review. Phytotherapy Research. 2021; 35(7): 3690-3701. doi: 10.1002/ptr.7066

163. Cai SQ, Zhang Q, Zhao XH, et al. The In Vitro Anti-Inflammatory Activities of Galangin and Quercetin towards the LPS-Injured Rat Intestinal Epithelial (IEC-6) Cells as Affected by Heat Treatment. Molecules. 2021; 26(24): 7495. doi: 10.3390/molecules26247495

164. Bharadwaj KK, Rabha B, Pati S, et al. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules. 2021; 26(21): 6389. doi: 10.3390/molecules26216389

165. Jannathul Firdhouse M, Lalitha P. Biogenic Green Synthesis of Gold Nanoparticles and Their Applications – a Review of Promising Properties. SSRN; 2022.

166. Duncan JBW, Basu S, Vivekanand P. Honey gold nanoparticles attenuate the secretion of IL-6 by LPS-activated macrophages. Sharma D, ed. PLOS ONE. 2023; 18(9): e0291076. doi: 10.1371/journal.pone.0291076

167. Li Y, Liu Y, Fu Y, et al. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials. 2012; 33(2): 402-411. doi: 10.1016/j.biomaterials.2011.09.091

168. Zhou H, Zhao K, Li W, et al. The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-κB-related signaling pathways. Biomaterials. 2012; 33(29): 6933-6942. doi: 10.1016/j.biomaterials.2012.06.064

169. Crisan D, Scharffetter‐Kochanek K, Crisan M, et al. Topical silver and gold nanoparticles complexed with Cornus mas suppress inflammation in human psoriasis plaques by inhibiting NF‐κB activity. Experimental Dermatology. 2018; 27(10): 1166-1169. doi: 10.1111/exd.13707

170. Shukla R, Bansal V, Chaudhary M, et al. Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir. 2005; 21(23): 10644-10654. doi: 10.1021/la0513712

171. Chen T, Fu L, Guo Z, et al. Involvement of high mobility group box‐1 in imiquimod‐induced psoriasis‐like mice model. The Journal of Dermatology. 2016; 44(5): 573-581. doi: 10.1111/1346-8138.13695

172. Jiang L, Shao Y, Tian Y, et al. Nuclear Alarmin Cytokines in Inflammation. Rao X, ed. Journal of Immunology Research. 2020; 2020: 1-8. doi: 10.1155/2020/7206451

173. Kayagaki N, Kornfeld O, Lee B, et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature. 2021; 591(7848): 131-136. doi: 10.1038/s41586-021-03218-7

174. Matsui Y, Takemura N, Shirasaki Y, et al. Nanaomycin E inhibits NLRP3 inflammasome activation by preventing mitochondrial dysfunction. International Immunology. 2022; 34(10): 505-518. doi: 10.1093/intimm/dxac028

175. Guarda G, Braun M, Staehli F, et al. Type I Interferon Inhibits Interleukin-1 Production and Inflammasome Activation. Immunity. 2011; 34(2): 213-223. doi: 10.1016/j.immuni.2011.02.006

176. Shirasuna K, Usui F, Karasawa T, et al. Nanosilica-induced placental inflammation and pregnancy complications: different roles of the inflammasome components NLRP3 and ASC. Journal of Reproductive Immunology. 2014; 106: 14. doi: 10.1016/j.jri.2014.09.035

177. Kanno S, Furuyama A, Hirano S. A Murine Scavenger Receptor MARCO Recognizes Polystyrene Nanoparticles. Toxicological Sciences. 2007; 97(2): 398-406. doi: 10.1093/toxsci/kfm050

178. Mukhopadhyay S, Varin A, Chen Y, et al. SR-A/MARCO–mediated ligand delivery enhances intracellular TLR and NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens. Blood. 2011; 117(4): 1319-1328. doi: 10.1182/blood-2010-03-276733

179. Hara K, Shirasuna K, Usui F, et al. Interferon-Tau Attenuates Uptake of Nanoparticles and Secretion of Interleukin-1β in Macrophages. Allen IC, ed. PLoS ONE. 2014; 9(12): e113974. doi: 10.1371/journal.pone.0113974

180. Dhanashree S, Fish A, Debnath M, et al. Sprayable inflammasome-inhibiting lipid nanorods in a polymeric scaffold for psoriasis therapy. Nature Communications. 2024; 15(1): 9035. doi: 10.1038/s41467-024-53396-x

181. Feng X, Liu D, Li Z, et al. Bioactive modulators targeting STING adaptor in cGAS-STING pathway. Drug Discovery Today. 2020; 25(1): 230-237. doi: 10.1016/j.drudis.2019.11.007

182. Ebina M, Steinberg SM, Mulshine JL, et al. Relationship of p53 overexpression and up-regulation of proliferating cell nuclear antigen with the clinical course of non-small cell lung cancer. Cancer Research. 1994; 54(9): 2496-2503.

183. Chan ESL, Cronstein BN. Methotrexate—how does it really work? Nature Reviews Rheumatology. 2010; 6(3): 175-178. doi: 10.1038/nrrheum.2010.5

184. Xu J, Chen H, Chu Z, et al. A multifunctional composite hydrogel as an intrinsic and extrinsic coregulator for enhanced therapeutic efficacy for psoriasis. Journal of Nanobiotechnology. 2022; 20(1): 155. doi: 10.1186/s12951-022-01368-y

185. Varol C, Mildner A, Jung S. Macrophages: Development and Tissue Specialization. Annual Review of Immunology. 2015; 33(1): 643-675. doi: 10.1146/annurev-immunol-032414-112220

186. Jiang D, Liang J, Noble PW. Hyaluronan as an Immune Regulator in Human Diseases. Physiological Reviews. 2011; 91(1): 221-264. doi: 10.1152/physrev.00052.2009

187. Duncan R. The dawning era of polymer therapeutics. Nature Reviews Drug Discovery. 2003; 2(5): 347-360. doi: 10.1038/nrd1088

188. Zhu Y, Crewe C, Scherer PE. Hyaluronan in adipose tissue: Beyond dermal filler and therapeutic carrier. Science Translational Medicine. 2016; 8(323). doi: 10.1126/scitranslmed.aad6793

189. Rao NV, Yoon HY, Han HS, et al. Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment. Expert Opinion on Drug Delivery. 2015; 13(2): 239-252. doi: 10.1517/17425247.2016.1112374

190. Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Medicine. 2005; 11(11): 1173-1179. doi: 10.1038/nm1315

191. Zheng L, Riehl TE, Stenson WF. Regulation of Colonic Epithelial Repair in Mice by Toll-Like Receptors and Hyaluronic Acid. Gastroenterology. 2009; 137(6): 2041-2051. doi: 10.1053/j.gastro.2009.08.055

192. Mummert ME, Mohamadzadeh M, Mummert DI, et al. Development of a Peptide Inhibitor of Hyaluronan-Mediated Leukocyte Trafficking. The Journal of Experimental Medicine. 2000; 192(6): 769-780. doi: 10.1084/jem.192.6.769

193. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013; 496(7446): 445-455. doi: 10.1038/nature12034

194. Lee WH, Rho JG, Yang Y, et al. Hyaluronic Acid Nanoparticles as a Topical Agent for Treating Psoriasis. ACS Nano. 2022; 16(12): 20057-20074. doi: 10.1021/acsnano.2c07843

195. Sendão RMS, Crista DMA, Afonso ACP, et al. Insight into the hybrid luminescence showed by carbon dots and molecular fluorophores in solution. Physical Chemistry Chemical Physics. 2019; 21(37): 20919-20926. doi: 10.1039/c9cp03730f

196. Kaur N, Mehta A, Mishra A, et al. Amphiphilic carbon dots derived by cationic surfactant for selective and sensitive detection of metal ions. Materials Science and Engineering: C. 2019; 95: 72-77. doi: 10.1016/j.msec.2018.10.058

197. Tan M, Zhang L, Tang R, et al. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source. Talanta. 2013; 115: 950-956. doi: 10.1016/j.talanta.2013.06.061

198. Imler TJ, Petro TM. Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17+IL-10+ T cells, CD4− IFN-γ+ cells, and decreased macrophage IL-6 expression. International Immunopharmacology. 2009; 9(1): 134-143. doi: 10.1016/j.intimp.2008.10.015

199. Mikita J, Dubourdieu-Cassagno N, Deloire MS, et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Multiple Sclerosis Journal. 2010; 17(1): 2-15. doi: 10.1177/1352458510379243

200. Platt AM, Mowat AMcI. Mucosal macrophages and the regulation of immune responses in the intestine. Immunology Letters. 2008; 119(1-2): 22-31. doi: 10.1016/j.imlet.2008.05.009

201. Qualls JE, Kaplan AM, Van Rooijen N, et al. Suppression of experimental colitis by intestinal mononuclear phagocytes. Journal of Leukocyte Biology. 2006; 80(4): 802-815. doi: 10.1189/jlb.1205734

202. Schappe MS, Szteyn K, Stremska ME, et al. Chanzyme TRPM7 Mediates the Ca2+ Influx Essential for Lipopolysaccharide-Induced Toll-Like Receptor 4 Endocytosis and Macrophage Activation. Immunity. 2018; 48(1): 59-74.e5. doi: 10.1016/j.immuni.2017.11.026

203. Tedesco S, Scattolini V, Albiero M, et al. Mitochondrial Calcium Uptake Is Instrumental to Alternative Macrophage Polarization and Phagocytic Activity. International Journal of Molecular Sciences. 2019; 20(19): 4966. doi: 10.3390/ijms20194966

204. Feng N, Liang L, Fan M, et al. Treating Autoimmune Inflammatory Diseases with an siERN1-Nanoprodrug That Mediates Macrophage Polarization and Blocks Toll-like Receptor Signaling. ACS Nano. 2021; 15(10): 15874-15891. doi: 10.1021/acsnano.1c03726

205. Zhao ZQ, Chen BZ, Gan JL, et al. Dual-functional microneedle with programmatic regulation of macrophage for autoimmune psoriasis treatment. Nano Research. 2024; 17(8): 7436-7448. doi: 10.1007/s12274-024-6711-5

206. Iuliano M, Grimaldi L, Rosa P, et al. Extracellular vescicles in psoriasis: from pathogenesis to possible roles in therapy. Frontiers in Immunology. 2024; 15. doi: 10.3389/fimmu.2024.1360618

207. Han C, Fu YX. β-Catenin regulates tumor-derived PD-L1. Journal of Experimental Medicine. 2020; 217(11). doi: 10.1084/jem.20200684

208. Wang Z, Qin Z, Wang J, et al. Engineering extracellular vesicles with macrophage membrane fusion for ameliorating imiquimod-induced psoriatic skin inflammation. Journal of Dermatological Treatment. 2023; 34(1). doi: 10.1080/09546634.2023.2220445

209. Jun L, Yuan Z, Shi S, et al. Microneedle patches incorporating zinc-doped mesoporous silica nanoparticles loaded with betamethasone dipropionate for psoriasis treatment. Journal of Nanobiotechnology. 2024; 22.

210. Ho Y, Chang Y, Yeh C. Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization. Theranostics. 2016; 6(3): 392-403. doi: 10.7150/thno.13727

211. Soto F, Jeerapan I, Silva‐López C, et al. Noninvasive Transdermal Delivery System of Lidocaine Using an Acoustic Droplet‐Vaporization Based Wearable Patch. Small. 2018; 14(49). doi: 10.1002/smll.201803266

212. Xi L, Han Y, Liu C, et al. Sonodynamic therapy by phase-transition nanodroplets for reducing epidermal hyperplasia in psoriasis. Journal of Controlled Release. 2022; 350: 435-447. doi: 10.1016/j.jconrel.2022.08.038

213. Ambarus C, Yeremenko N, Tak PP, et al. Pathogenesis of spondyloarthritis. Current Opinion in Rheumatology. 2012; 24(4): 351-358. doi: 10.1097/bor.0b013e3283534df4

214. Lubberts E. The IL-23–IL-17 axis in inflammatory arthritis. Nature Reviews Rheumatology. 2015; 11(7): 415-429. doi: 10.1038/nrrheum.2015.53

215. EJNMMI Radiopharmacy and Chemistry. Abstracts from the 20th European symposium on radiopharmacy and radiopharmaceuticals. EJNMMI Radiopharmacy and Chemistry. 2023; 8(Suppl 1): 11.

216. Fruchon S, Mouriot S, Thiollier T, et al. Repeated intravenous injections in non-human primates demonstrate preclinical safety of an anti-inflammatory phosphorus-based dendrimer. Nanotoxicology. 2014; 9(4): 433-441. doi: 10.3109/17435390.2014.940406

217. Erol İ, Üstündağ Okur N, Orak D, et al. Tazarotene-loadedin situgels for potential management of psoriasis: biocompatibility, anti-inflammatory and analgesic effect. Pharmaceutical Development and Technology. 2020; 25(8): 909-918. doi: 10.1080/10837450.2020.1765180

218. Danquah W, Meyer-Schwesinger C, Rissiek B, et al. Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Science Translational Medicine. 2016; 8(366). doi: 10.1126/scitranslmed.aaf8463

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).