
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.

PARP-1 Inhibition Ameliorates Neuronal Damage in Valproic Acid-Induced Models of Autism Spectrum Disorder through the MKP-1/p38 Pathway
Vol 37, Issue 8, 2023
Abstract
Background: In this study, we explore the potential mechanism of poly(ADP-ribose) polymerase-1 (PARP-1) inhibition on autism spectrum disorder (ASD) using 5-aminoisoquinolinone (5-AIQ), a PARP-1 inhibitor that has been shown to ameliorate ASD in black and tan brachyury (BTBR) mice. Methods: ASD animal models were established in neonatal Wistar rats by using valproic acid (VPA) induction, and the model rats were treated with 5-AIQ. The social interaction of neonatal rats in the models was evaluated through a three-chamber social test. VPA-induced ASD cell models were constructed in primary cortical neurons bearing PARP-1/mitogen-activated protein kinase phosphatase 1 (MKP-1) knockdown, followed by 5-AIQ treatment. Expressions of PARP-1 and MKP-1 were assessed by quantitative real-time polymerase chain reaction. The viability and apoptosis were measured by cell counting kit-8 (CCK-8) and TdT-mediated dUTP nick end labeling (TUNEL) assays. Reactive oxygen species (ROS) production was evaluated through specific kits. Levels of 4-Hydroxynonenal (4-HNE), PARP-1, MKP-1, phosphorylated-p38 (p-p38), p38, c-caspase-3, B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X (Bax) were analyzed through Western blot. Results: The ability of social interaction among neonatal rats was suppressed in VPA-induced ASD animal models (p < 0.001). Expressions of 4-HNE, PARP-1, c-caspase-3, and Bax, as well as the ratio of p-p38/p38, were increased, while the expressions of MKP-1 and Bcl-2 were decreased in VPA-induced ASD animal models (p < 0.001). All these effects were reversed by 5-AIQ (p < 0.05). Suppressed viability, increased ROS production/apoptosis/ratio of p-p38/p38, upregulated PARP-1/c-caspase-3/Bax expression, and downregulated MKP-1/Bcl-2 expression in VPA-induced ASD cell models were reversed by 5-AIQ/small interfering RNA targeting PARP-1 (siPARP-1) (p < 0.01), while the effects of siPARP-1 were counteracted by small interfering RNA targeting MKP-1 (siMKP-1) (p < 0.001). Conclusions: PARP-1 inhibition ameliorates neuronal damage in VPA-induced models of ASD by the MKP-1/p38 pathway.
Keywords
References
Supporting Agencies
Copyright (c) 2023 Jiachen Xu, Qianqi Ma
This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Medical Genetics, University of Torino Medical School, Italy

Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy