
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.

HOTAIR Silencing Reduces Oxaliplatin Resistance in Gastric Cancer through PI3K/Akt Pathway
Vol 36, Issue 6, 2022
Abstract
Background: Oxaliplatin (OXA) is used to treat patients with advanced gastric cancer (GC). However, due to the presence of drug resistance, GC patients often respond poorly to chemotherapy. Methods: Quantitative real-time PCR (RT-qPCR) to detect HOX (homeobox) transcript antisense intergenic RNA (HOTAIR) expression in GC patients and OXA-resistant SGC-7901 cells. After HOTAIR silencing, Cell Counting Kit-8 (CCK-8), flow cytometry, wound-healing test, and Transwell® assay respectively measure cell proliferation, cell cycle and apoptosis, cell migration, and invasion ability. The p-PI3K, PI3K (phosphatidylinositol 3 kinase), p-ATK, ATK (protein kinase B), E-cadherin and Vimentin protein expression and their mRNA expression levels were tested by Western blotting and RT-qPCR. In addition, a xenograft tumor experiment was conducted to further verify the role of HOTAIR in GC. Results: In this study, we observed that HOTAIR was highly expressed in GC patients and OXA-resistant SGC-7901 cells. HOTAIR silencing significantly reduced the proliferation, migration and invasion ability of SGC-7901 and OXA-resistant SGC-7901 cells, increased the apoptosis rate, and arrested cells at the G2 phase. In vivo research revealed that HOTAIR knockdown significantly inhibited tumor development. Silencing HOTAIR inhibited phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling pathway while decreasing the expression of Vimentin, p-Akt and p-PI3K, and increasing the expression of E-cadherin. Overall, HOTAIR silencing inhibits epithelial-mesenchymal transition (EMT) through the PI3K/Akt pathway to inhibit OXA resistance in GC. Conclusions: HOTAIR might be a potential novel therapeutic target for GC that is OXA-resistant.
Keywords
References
Supporting Agencies
Copyright (c) 2022 Xiaohui Sun, Yuyan Shi, Nan Hua
This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Medical Genetics, University of Torino Medical School, Italy

Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy