
Asia Pacific Academy of Science Pte. Ltd. (APACSCI) specializes in international journal publishing. APACSCI adopts the open access publishing model and provides an important communication bridge for academic groups whose interest fields include engineering, technology, medicine, computer, mathematics, agriculture and forestry, and environment.

Chlamydia trachomatis elicits TLR3 expression but disrupts the inflammatory signaling down-modulating NFκB and IRF3 transcription factors in human Sertoli cells
Vol 34, Issue 3, 2020
Abstract
Chlamydia trachomatis, the leading cause of bacterial sexually transmitted diseases worldwide, can disseminate and localize to the upper genital tract impairing reproductive function. Specifically, ascending C. trachomatis genital infection has been demonstrated to cause epididymitis or epididymo-orchitis, well-known risk factors for male infertility. C. trachomatis possesses the ability to infect primary human Sertoli cells, key elements for the spermatogenetic process and the immune protection of germ cells. Therefore, herein, we investigated the innate immune response in Sertoli cells following C. trachomatis infection, as well as its indirect effects on human spermatozoa. Specifically, we evaluated C. trachomatis mediated induction of Toll-like Receptors (TLR) 2, 3 and 4 as well as of downstream intracellular signaling molecules (NFκB and IRF3) and the levels of the related inflammatory mediators (IL-1α, IL-6, IFN-α, IFN-β and IFN-γ), in an in vitro infection model of primary human Sertoli cells. The main result of our study shows that C. trachomatis induced TLR3-mediated recognition in human Sertoli cells, accompanied by the down-modulation of NFκB and IRF3-dependent signaling pathways followed by no production of pro-inflammatory cytokines. In conclusion, our findings suggest that C. trachomatis can disrupt the innate immune response in Sertoli cells and evade intracellular killing, potentially giving rise to a long-term infection that may exert negative effects on the male reproductive system.
Keywords
References
Supporting Agencies
Copyright (c) 2020 M.Di Pietro, S. Filardo, V. Alfano, M. Pelloni, E. Splendiani, A. Po, D. Paoli, E. Ferretti, R. Sessa
This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Medical Genetics, University of Torino Medical School, Italy

Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy