Amelioration of COVID-19 comorbid depressions via interleukin 6 with agomelatine

Yang I. Cao

Article ID: 3377
Vol 39, Issue 2, 2025
DOI: https://doi.org/10.54517/jbrha3377
Received: 4 March 2025; Accepted: 11 March 2025; Available online: 13 March 2025; Issue release: 31 March 2025


Download PDF

Abstract

Background: Existing research has found that the Spike 2 protein of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is homogenous to the gp41 protein of the Human Immunodeficiency Virus-1. Postmortem SARS-CoV-2 patients are reported to exhibit microglial activation and expression of interleukin (IL)-1β and IL-6, corroborating with the other in vitro observations. Methods: The translational research draws upon the phenomena from metacognition in dreams to achieve the therapeutic solution conception on Coronavirus Disease 2019 (COVID-19) vaccination-induced central nervous system (CNS) cytokine expression. Results: Partial milestones have been achieved with cognitive-behavioral therapy in combination with agomelatine and γ-aminobutyric acid stimulation physical therapy, and the direct evidence suggests that the temporal amelioration was contributed by interleukin 6 inhibition with Agomelatine’s mechanism of action. The photic and nonphotic treatment designs have progressed in the clinical trials by the evidence-based medicine method. Conclusions: The conservation of the circadian CNS function is the main direction for the purpose of the study design progress, and the case study for the participant with Asperger’s Syndrome indicates the correlation of migraine in autism spectrum disorder with interferon-λ.


Keywords

cognitive impairment; progressive memory decline; sleep and dreams; major depression disorder; synaptic vesicles


References

1. Ma MA, Morrison EH. Neuroanatomy, Nucleus Suprachiasmatic. Treasure Island (FL): StatPearls Publishing; 2024.

2. Jan JE, Reiter RJ, Wasdell MB, et al. The role of the thalamus in sleep, pineal melatonin production, and circadian rhythm sleep disorders. Journal of Pineal Research. 2008; 46(1): 1-7. doi: 10.1111/j.1600-079x.2008.00628.x

3. Gent TC, Bandarabadi M, Herrera CG, et al. Thalamic dual control of sleep and wakefulness. Nature Neuroscience. 2018; 21(7): 974-984. doi: 10.1038/s41593-018-0164-7

4. Starnes AN, Jones JR. Inputs and Outputs of the Mammalian Circadian Clock. Biology. 2023; 12(4): 508. doi: 10.3390/biology12040508

5. Dijk DJ. Regulation and Functional Correlates of Slow Wave Sleep. Journal of Clinical Sleep Medicine. 2009; 5(2 suppl). doi: 10.5664/jcsm.5.2s.s6

6. Kahan TL. Consciousness in Dreaming: A metacognitive approach. In: Bulkeley K (editor). Dreams: A reader on religious, cultural, and psychological dimensions of dreaming. Palgrave Macmillan; 2001.

7. Fleming SM, Dolan RJ. The neural basis of metacognitive ability. Philosophical Transactions of the Royal Society B: Biological Sciences. 2012; 367(1594): 1338-1349. doi: 10.1098/rstb.2011.0417

8. Muzur A, Pace-Schott EF, Hobson JA. The prefrontal cortex in sleep. Trends in Cognitive Sciences. 2002; 6(11): 475-481. doi: 10.1016/S1364-6613(02)01992-7

9. Chen PC, Niknazar H, Alaynick WA, et al. Competitive dynamics underlie cognitive improvements during sleep. Proceedings of the National Academy of Sciences. 2021; 118(51). doi: 10.1073/pnas.2109339118

10. McDonnell WM. Analysis and Assessment of Gateway Process. In: Army Dot (editor). Central Intelligence Agency; 1983.

11. Wilckens KA, Aizenstein HJ, Nofzinger EA, et al. The role of non‐rapid eye movement slow‐wave activity in prefrontal metabolism across young and middle‐aged adults. Journal of Sleep Research. 2016; 25(3): 296-306. doi: 10.1111/jsr.12365

12. Rohleder N, Aringer M, Boentert M. Role of interleukin‐6 in stress, sleep, and fatigue. Annals of the New York Academy of Sciences. 2012; 1261(1): 88-96. doi: 10.1111/j.1749-6632.2012.06634.x

13. Vgontzas AN, Papanicolaou DA, Bixler EO, et al. Circadian Interleukin-6 Secretion and Quantity and Depth of Sleep. The Journal of Clinical Endocrinology & Metabolism. 1999; 84(8): 2603-2607. doi: 10.1210/jcem.84.8.5894

14. Hong S, Mills PJ, Loredo JS, et al. The association between interleukin-6, sleep, and demographic characteristics. Brain, Behavior, and Immunity. 2005; 19(2): 165-172. doi: 10.1016/j.bbi.2004.07.008

15. Jin Y, Sun LH, Yang W, et al. The Role of BDNF in the Neuroimmune Axis Regulation of Mood Disorders. Frontiers in Neurology. 2019; 10. doi: 10.3389/fneur.2019.00515

16. Soung AL, Vanderheiden A, Nordvig AS, et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain. 2022; 145(12): 4193-4201. doi: 10.1093/brain/awac270

17. Li Y, Renner DM, Comar CE, et al. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. PNAS. 2021; 118(16): e2022643118.

18. Rossetti AC, Paladini MS, Brüning CA, et al. Involvement of the IL-6 Signaling Pathway in the Anti-Anhedonic Effect of the Antidepressant Agomelatine in the Chronic Mild Stress Model of Depression. International Journal of Molecular Sciences. 2022; 23(20): 12453. doi: 10.3390/ijms232012453

19. Anand IS, Fisher LD, Chiang YT, et al. Changes in Brain Natriuretic Peptide and Norepinephrine Over Time and Mortality and Morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation. 2003; 107(9): 1278-1283. doi: 10.1161/01.cir.0000054164.99881.00

20. Wang S, Cheng Q, Malik S, Yang J. Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. The Journal of Pharmacology and Experimental Therapeutics. 2000; 292(2): 497-504. doi: 10.1016/S0022-3565(24)35318-2

21. Fu J, Han Z, Wu Z, et al. GABA regulates IL-1β production in macrophages. Cell Reports. 2022; 41(10): 111770. doi: 10.1016/j.celrep.2022.111770

22. Vetri L. Autism and Migraine: An Unexplored Association? Brain Sciences. 2020; 10(9): 615. doi: 10.3390/brainsci10090615

23. Asci H, Ozmen O, Erzurumlu Y, et al. Agomelatine protects heart and aorta against lipopolysaccharide-induced cardiovascular toxicity via inhibition of NF-kβ phosphorylation. Drug and Chemical Toxicology. 2019; 45(1): 133-142. doi: 10.1080/01480545.2019.1663209

24. Chenaf C, Chapuy E, Libert F, et al. Agomelatine: a new opportunity to reduce neuropathic pain—preclinical evidence. Pain. 2016; 158(1): 149-160. doi: 10.1097/j.pain.0000000000000738

25. Liu H, Leak RK, Hu X. Neurotransmitter receptors on microglia. Stroke and Vascular Neurology. 2016; 1(2): 52-58. doi: 10.1136/svn-2016-000012

26. Piber D, Olmstead R, Cho JH, et al. Interferon-γ moderation of poor sleep maintenance and depressed mood in community-dwelling older adults. Psychological Medicine. 2022; 53(8): 3548-3556. doi: 10.1017/s0033291722000113

27. Vikman KS, Owe-Larsson B, Brask J, et al. Interferon-γ-induced changes in synaptic activity and AMPA receptor clustering in hippocampal cultures. Brain Research. 2001; 896(1): 18-29. doi: 10.1016/S0006-8993(00)03238-8

28. Girshman YJ, Wang Y, Mendelowitz A. Olanzapine for the Treatment of Psychiatric Illness and Urticaria: A Case Report. Psychosomatics. 2014; 55(6): 735-738. doi: 10.1016/j.psym.2014.03.005

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/


This site is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).