Diabetic technology in India: Status, barriers, and future prospects

S. Sindhuja, E. Kanniga

Article ID: 2645
Vol 4, Issue 1, 2023
DOI: https://doi.org/10.54517/wt.v4i1.2645
VIEWS - 1829 (Abstract)

Download PDF

Abstract

This article provides a comprehensive review of diabetic technology in India. Researchers are persistently integrating novel technologies and enhanced medical knowledge to offer further avenues for improving the well-being of individuals with diabetes. Continuous patient engagement is essential by using highly effective technologies that address pertinent issues, as certain problems can be resolved with precision. India has a demographically large population, characterized by a substantial segment of individuals with diabetes. The estimated prevalence of diabetes in India is approximately 8%, with type 2 diabetes accounting for half of these occurrences. India’s per capita expenditure on health constantly falls behind that of other developing countries. Refined statistical data indicate that India’s healthcare expenditure is <50% of the average expenditure observed in the Organization for Economic Co-operation and Development (OECD) countries.


Keywords

diabetes; patient management; blood glucose; state of art; global scenario; Indian scenario


References

1. Ellahham S. Artificial Intelligence: The Future for Diabetes Care. The American Journal of Medicine. 2020; 133(8): 895-900. doi: 10.1016/j.amjmed.2020.03.033

2. Anjana RM, Deepa M, Pradeepa R, et al. Prevalence of diabetes and prediabetes in 15 states of India: Results from the ICMR-INDIAB population-based cross—Sectional study. Lancet Diabetes Endocrinol. 5(8): 585-596. doi: 10.1016/S2213-8587(17)30174-2

3. Hasni U, Piper ME, Lundquist J, et al. Screen-Printed Fabric Antennas for Wearable Applications. IEEE Open Journal of Antennas and Propagation. 2021; 2: 591-598. doi: 10.1109/ojap.2021.3070919

4. Khajeh-Khalili F, Khosravi Y. A novel wearable wideband antenna for application in wireless medical communication systems with jeans substrate. The Journal of The Textile Institute. 2020; 112(8): 1266-1272. doi: 10.1080/00405000.2020.1809909

5. Alqadami ASM, Nguyen-Trong N, Stancombe AE, et al. Compact Flexible Wideband Antenna for On-Body Electromagnetic Medical Diagnostic Systems. IEEE Transactions on Antennas and Propagation. 2020; 68(12): 8180-8185. doi: 10.1109/tap.2020.2996815

6. Pei R, Leach M, Lim EG, et al. Wearable Belt Antenna for Body Communication Networks. IEEE Antennas and Wireless Propagation Letters. 2020; 19(12): 2043-2047. doi: 10.1109/lawp.2020.3021677

7. Mu G, Ren P. A Compact Dual-Band Metasurface-Based Antenna for Wearable Medical Body-Area Network Devices. Journal of Electrical and Computer Engineering. 2020; 2020: 1-10. doi: 10.1155/2020/4967198

8. El Gharbi M, Fernández-García R, Ahyoud S, et al. A Review of Flexible Wearable Antenna Sensors: Design, Fabrication Methods, and Applications. Materials. 2020; 13(17): 3781. doi: 10.3390/ma13173781

9. Joshi R, Podilchak SK, Anagnostou DE, et al. Analysis and Design of Dual-Band Folded-Shorted Patch Antennas for Robust Wearable Applications. IEEE Open Journal of Antennas and Propagation. 2020; 1: 239-252. doi: 10.1109/ojap.2020.2991343

10. SarestoNiemi M, Pomalaza-raez C, Bi Z, et al. Comprehensive Study on the Impact of Sternotomy Wires on UWB WBAN Channel Characteristics on the Human Chest Area. IEEE Access. 2019; 7: 74670-74682. doi: 10.1109/access.2019.2920067

11. Kannagi V, Jawahar A. Epidermal antenna in palmar arch region for anaemia detection to avoid peripheral perfusion artifact in optical sensor during hemoglobin measurement. Microsystem Technologies. 2019; 26(5): 1427-1435. doi: 10.1007/s00542-019-04675-x

12. Ding S, Koulouridis S, Pichon L. Design and characterization of a dual-band miniaturized circular antenna for deep in body biomedical wireless applications. International Journal of Microwave and Wireless Technologies. 2020; 12(6): 461-468. doi: 10.1017/s1759078720000197

13. Yousefnia M, Ebrahimzadeh A, Dehmollaian M, et al. A Time-Reversal Imaging System for Breast Screening: Theory and Initial Phantom Results. IEEE Transactions on Biomedical Engineering. 2018; 65(11): 2542-2551. doi: 10.1109/tbme.2018.2807799

14. Das S, Mitra D. A Compact Wideband Flexible Implantable Slot Antenna Design with Enhanced Gain. IEEE Transactions on Antennas and Propagation. 2018; 66(8): 4309-4314. doi: 10.1109/tap.2018.2836463

15. Hu X, Yan S, Vandenbosch GAE. Wearable Button Antenna for Dual-Band WLAN Applications with Combined on and off-Body Radiation Patterns. IEEE Transactions on Antennas and Propagation. 2017; 65(3): 1384-1387. doi: 10.1109/tap.2017.2653768

16. Lee H, Tak J, Choi J. Wearable Antenna Integrated into Military Berets for Indoor/Outdoor Positioning System. IEEE Antennas and Wireless Propagation Letters. 2017; 16: 1919-1922. doi: 10.1109/lawp.2017.2688400

17. Hasan MN, Tamanna S, Singh P, et al. Cylindrical Dielectric Resonator Antenna Sensor for Non-Invasive Glucose Sensing Application. In: Proceedings of the 6th International Conference on Signal Processing and Integrated Networks (SPIN); 2019. doi: 10.1109/SPIN.2019.8711633

18. Jang C, Park JK, Lee HJ, et al. Temperature-Corrected Fluidic Glucose Sensor Based on Microwave Resonator. Sensors. 2018; 18(11): 3850. doi: 10.3390/s18113850

19. Sethi WT, Ashraf MA, Alshebeili SA, et al. Thumb positioning analysis of new elliptical‐shaped microwave sensors for non‐invasive glucose monitoring. Electronics Letters. 2018; 54(9): 553-554. doi: 10.1049/el.2018.0128

20. Turgul V, Kale I. Simulating the Effects of Skin Thickness and Fingerprints to Highlight Problems with Non-Invasive RF Blood Glucose Sensing from Fingertips. IEEE Sensors Journal. 2017; 17(22): 7553-7560. doi: 10.1109/jsen.2017.2757083

21. Masihi S, Panahi M, Maddipatla D, et al. Development of a Flexible Tunable and Compact Microstrip Antenna via Laser Assisted Patterning of Copper Film. IEEE Sensors Journal. 2020; 20(14): 7579-7587. doi: 10.1109/jsen.2020.2987318

22. Abutarboush HF, Li W, Shamim A. Flexible-Screen-Printed Antenna with Enhanced Bandwidth by Employing Defected Ground Structure. IEEE Antennas and Wireless Propagation Letters. 2020; 19(10): 1803-1807. doi: 10.1109/lawp.2020.3019462

23. Bharadwaj R, Swaisaenyakorn S, Parini CG, et al. Impulse Radio Ultra-Wideband Communications for Localization and Tracking of Human Body and Limbs Movement for Healthcare Applications. IEEE Transactions on Antennas and Propagation. 2017; 65(12): 7298-7309. doi: 10.1109/tap.2017.2759841

24. Mao CX, Vital D, Werner DH, et al. Dual-Polarized Embroidered Textile Armband Antenna Array with Omnidirectional Radiation for On-/Off-Body Wearable Applications. IEEE Transactions on Antennas and Propagation. 2020; 68(4): 2575-2584. doi: 10.1109/tap.2019.2951517

25. Zhang W, Du Y, Wang ML. Noninvasive glucose monitoring using saliva nano-biosensor. Sensing and Bio-Sensing Research. 2015; 4: 23-29. doi: 10.1016/j.sbsr.2015.02.002

26. Agustini D, Bergamini MF, Marcolino-Junior LH. Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis. Biosensors and Bioelectronics. 2017; 98: 161-167. doi: 10.1016/j.bios.2017.06.035

27. Wang R, Zhai Q, An T, et al. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta. 2021; 222: 121484. doi: 10.1016/j.talanta.2020.121484

28. Chen Y, Lu S, Zhang S, et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Science Advances. 2017; 3(12). doi: 10.1126/sciadv.1701629

29. Saha S, Cano-Garcia H, Sotiriou I, et al. A Glucose Sensing System Based on Transmission Measurements at Millimetre Waves using Micro strip Patch Antennas. Scientific Reports. 2017; 7(1). doi: 10.1038/s41598-017-06926-1

30. Vrba J, Karch J, Vrba D. Phantoms for Development of Microwave Sensors for Noninvasive Blood Glucose Monitoring. International Journal of Antennas and Propagation. 2015; 2015: 1-5. doi: 10.1155/2015/570870

31. Xiao X, Li Q. A Noninvasive Measurement of Blood Glucose Concentration by UWB Microwave Spectrum. IEEE Antennas and Wireless Propagation Letters. 2017; 16: 1040-1043. doi: 10.1109/lawp.2016.2618946

32. Mahnashi Y, Qureshi KK, Al-Shehri AA, et al. Design and Experimental Validation of a Noninvasive Glucose Monitoring System Using RF Antenna-Based Biosensor. IEEE Sensors Journal. 2023; 23(3): 2856-2864. doi: 10.1109/jsen.2022.3227382

33. Sindhuja S, Kanniga E. Flexible Antenna Sensor in Thumb Spica Splint for Noninvasive Monitoring of Fluctuating Blood Glucose Levels. IEEE Sensors Journal. 2023; 23(1): 544-551. doi: 10.1109/jsen.2022.3223948

34. Puthussery VV. What is the Prevalence of Diabetes in India? Current Data and Stats? Available online: https://diabetes.co.in/what-is-the-prevalence-of-diabetes-in-india-current-data-and-stats (accessed on 25 March 2024).

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 S. Sindhuja, E. Kanniga

License URL: https://creativecommons.org/licenses/by/4.0/