References
Liu J, Al’Aref SJ, Singh G, et al. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLOS ONE. 2019; 14(7): e0219174. doi: 10.1371/journal.pone.0219174
Linte CA, White J, Eagleson R, et al. Virtual and augmented medical imaging environments: Enabling technology for minimally invasive cardiac Interventional guidance. IEEE Reviews in Biomedical Engineering. 2010; 3: 25–47. doi: 10.1109/rbme.2010.2082522
Pugin F, Bucher P, Morel P. History of robotic surgery: From AESOP® and ZEUS® to da Vinci®. Journal of Visceral Surgery. 2011; 148(5): e3–e8. doi: 10.1016/j.jviscsurg.2011.04.007
Abbou CC, Hoznek A, Salomon L, et al. Remote laparoscopic radical prostatectomy carried out with a robot. Report of a case (French). Prog Urol. 2000; 10(4): 520–3.
Yanagawa F, Perez M, Bell T, et al. Critical outcomes in nonrobotic vs robotic-assisted cardiac surgery. JAMA Surgery. 2015; 150(8): 771–777. doi: 10.1001/jamasurg.2015.1098
Shahin GMM, Bruinsma GJBB, Stamenkovic S, Cuesta MA. Training in robotic thoracic surgery—the European way. Annals of Cardiothoracic Surgery. 2019; 8(2): 202–209. doi: 10.21037/acs.2018.11.06
Cerfolio RJ, Cichos KH, Wei B, et al. Robotic lobectomy can be taught while maintaining quality patient outcomes. The Journal of Thoracic and Cardiovascular Surgery. 2016; 152(4): 991–997. doi: 10.1016/j.jtcvs.2016.04.085
Endo Y, Nakamura Y, Kuroda M, et al. The utility of a 3D endoscope and robot-assisted system for MIDCAB. Annals of Thoracic and Cardiovascular Surgery. 2019; 25(4): 200–204. doi: 10.5761/atcs.oa.18-00254
Lewis CTP, Stephens RL, Tyndal CM, Cline JL. Concomitant robotic mitral and tricuspid valve repair: Technique and early experience. The Annals of Thoracic Surgery. 2014; 97(3): 782–787. doi: 10.1016/j.athoracsur.2013.09.049
Ju MH, Huh JH, Lee CH, et al. Robotic-assisted surgical ablation of atrial fibrillation combined with mitral valve surgery. The Annals of Thoracic Surgery. 2019; 107(3): 762–768. doi: 10.1016/j.athoracsur.2018.08.059
Rillig A, Schmidt B, Biase LD, et al. Manual versus robotic catheter ablation for the treatment of atrial fibrillation: The man and machine trial. JACC: Clinical Electrophysiology. 2017; 3(8): 875–883. doi: 10.1016/j.jacep.2017.01.024
Ward AF, Applebaum RM, Toyoda N, et al. Totally endoscopic robotic left atrial appendage closure demonstrates high success rate. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2017; 12(1): 46–49. doi: 10.1097/imi.0000000000000330
Lewis CTP, Stephens RL, Horst VD, et al. Application of an epicardial left atrial appendage occlusion device by a robotic-assisted, right-chest approach. The Annals of Thoracic Surgery. 2016; 101(5): e177–e178. doi: 10.1016/j.athoracsur.2015.11.028
Xiao C, Gao C, Yang M, et al. Totally robotic atrial septal defect closure: 7-year single-institution experience and follow-up. Interactive CardioVascular and Thoracic Surgery. 2014; 19(6): 933–937. doi: 10.1093/icvts/ivu263
Onan B, Aydin U, Kadirogullari E, et al. Robotic repair of partial anomalous pulmonary venous connection: the initial experience and technical details. Journal of Robotic Surgery. 2019; 14(1): 101–107. doi: 10.1007/s11701-019-00943-0
Onan B, Aydin U, Turkvatan A, et al. Robot-assisted repair of right partial anomalous pulmonary venous return. Journal of Cardiac Surgery. 2016; 31(6): 394–397. doi: 10.1111/jocs.12753
Lewis CTP, Bethencourt DM, Stephens RL, et al. Robotic repair of sinus venosus atrial septal defect with partial anomalous pulmonary venous return and persistent left superior vena cava. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2014; 9(5): 388–390. doi: 10.1097/imi.0000000000000093
Onan B, Aydin U, Basgoze S, et al. Totally endoscopic robotic repair of coronary sinus atrial septal defect. Interactive CardioVascular and Thoracic Surgery. 2016; 23(4): 662–664. doi: 10.1093/icvts/ivw200
Bakir I, Onan B, Kadirogullari E. Robotically assisted repair of partial atrioventricular canal defect. Artificial Organs. 2016; 40(9): 917–918. doi: 10.1111/aor.12800
Gao C, Yang M, Wang G, et al. Totally endoscopic robotic ventricular septal defect repair. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2010; 5(4): 278–280. doi: 10.1097/imi.0b013e3181ee94cb
Gao C, Yang M, Wang G, et al. Totally robotic resection of myxoma and atrial septal defect repair. Interactive Cardio Vascular and Thoracic Surgery. 2008; 7(6): 947–950. doi: 10.1510/icvts.2008.185991
Murphy ET. Robotic excision of aortic valve papillary fibroelastoma and concomitant maze procedure. Global Cardiology Science and Practice. 2013; 2012(2): 93–100. doi: 10.5339/gcsp.2012.27
Woo YJ, Grand TJ, Weiss SJ. Robotic resection of an aortic valve papillary fibroelastoma. The Annals of Thoracic Surgery. 2005; 80(3): 1100–1102. doi: 10.1016/j.athoracsur.2004.02.108
Folliguet TA, Vanhuyse F, Magnano D, et al. Robotic aortic valve replacement: Case report. The Heart Surgery Forum. 2004; 7(6): E551–E553. doi: 10.1532/hsf98.20041025
Folliguet TA, Vanhuyse F, Konstantinos Z, et al. Early experience with robotic aortic valve replacement. European Journal of Cardio-Thoracic Surgery. 2005; 28(1): 172–173. doi: 10.1016/j.ejcts.2005.03.021
Balkhy HH, Lewis CTP, Kitahara H. Robot‐assisted aortic valve surgery: State of the art and challenges for the future. The International Journal of Medical Robotics and Computer Assisted Surgery. 2018; 14(4): e1913. doi: 10.1002/rcs.1913
Malhotra SP, Le D, Thelitz S, et al. Robotic-assisted endoscopic thoracic aortic anastomosis in juvenile lambs. The Heart Surgery Forum. 2002; 6(1): 38–42. doi: 10.1532/hsf.879
Srivastava SP, Patel KN, Skantharaja R, et al. Off-pump complete revascularization through a left lateral thoracotomy (ThoraCAB): The first 200 cases. The Annals of Thoracic Surgery. 2003; 76(1): 46–49.
Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. EuroIntervention. 2019; 14(14): 1435–1534. doi: 10.4244/EIJY19M01_01
Patel MR, Calhoon JH, Dehmer GJ, et al. Correction to: ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 appropriate use criteria for coronary revascularization in patients with stable ischemic heart disease. Journal of Nuclear Cardiology. 2018; 25(6): 2191–2192. doi: 10.1007/s12350-018-1292-x
Patel MR, Calhoon JH, Dehmer GJ, et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2016 appropriate use criteria for coronary revascularization in patients with acute coronary syndromes. Journal of the American College of Cardiology. 2017; 69(5): 570–591. doi: 10.1016/j.jacc.2016.10.034
Tajstra M, Hrapkowicz T, Hawranek M, et al. Hybrid coronary revascularization in selected patients with multivessel disease. JACC: Cardiovascular Interventions. 2018; 11(9): 847–852. doi: 10.1016/j.jcin.2018.01.271
Guan Z, Zhang Z, Gu K, et al. Minimally invasive CABG or hybrid coronary revascularization for multivessel coronary diseases: Which is best? A Systematic Review and Metaanalysis. The Heart Surgery Forum. 2019; 22(6): E493–E502. doi: 10.1532/hsf.2499
Gorki H, Patel NC, Balacumaraswami L, et al. Long-term survival after minimal invasive direct coronary artery bypass (MIDCAB) surgery in patients with low ejection fraction. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2010; 5(6): 400–406. doi: 10.1177/155698451000500604
Dhawan R, Roberts JD, Wroblewski K, et al. Multivessel beating heart robotic myocardial revascularization increases morbidity and mortality. The Journal of Thoracic and Cardiovascular Surgery. 2012; 143(5): 1056–1061. doi: 10.1016/j.jtcvs.2011.06.023
Wang S, Zhou J, Cai JF. Traditional coronary artery bypass graft versus totally endoscopic coronary artery bypass graft or robot-assisted coronary artery bypass graft--meta-analysis of 16 studies. Eur Rev Med Pharmacol Sci. 2014;18(6): 790–7.
Srivastava S, Barrera R, Quismundo S. One One hundred sixty-four consecutive beating heart totally endoscopic coronary artery bypass cases without intraoperative conversion. The Annals of Thoracic Surgery. 2012; 94(5): 1463–1468. doi: 10.1016/j.athoracsur.2012.05.028
Bonatti JO, Zimrin D, Lehr EJ, et al. Hybrid coronary revascularization using robotic totally endoscopic surgery: Perioperative outcomes and 5-year results. The Annals of Thoracic Surgery. 2012; 94(6): 1920–1926. doi: 10.1016/j.athoracsur.2012.05.041
Bonaros N, Schachner T, Lehr E, et al. Five hundred cases of robotic totally endoscopic coronary artery bypass grafting: Predictors of success and safety. The Annals of Thoracic Surgery. 2013; 95(3): 803–812. doi: 10.1016/j.athoracsur.2012.09.071
Bonaros N, Schachner T, Kofler M, et al. Advanced hybrid closed chest revascularization: an innovative strategy for the treatment of multivessel coronary artery disease. European Journal of Cardio-Thoracic Surgery. 2014; 46(6): e94–e102. doi: 10.1093/ejcts/ezu357
Cavallaro P, Rhee AJ, Chiang Y, et al. In-hospital mortality and morbidity after robotic coronary artery surgery. Journal of Cardiothoracic and Vascular Anesthesia. 2015; 29(1): 27–31. doi: 10.1053/j.jvca.2014.03.009
Zaouter C, Imbault J, Labrousse L, et al. Association of robotic totally endoscopic coronary artery bypass graft surgery associated with a preliminary cardiac enhanced recovery after surgery program: A retrospective analysis. Journal of Cardiothoracic and Vascular Anesthesia. 2015; 29(6): 1489–1497. doi: 10.1053/j.jvca.2015.03.003
Kofler M, Schachner T, Sebastian JR, et al. Comparative analysis of perioperative and mid-term results of TECAB and MIDCAB for revascularization of anterior wall. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2017; 12(3): 207–213. doi: 10.1097/imi.0000000000000378
Alaj E, Seidiramool V, Ciobanu V, et al. Short-term clinical results of minimally invasive direct coronary artery bypass (MIDCAB) procedure. Journal of Clinical Medicine. 2024; 13(11): 3124. doi: 10.3390/jcm13113124
Algoet M, Verbelen T, Jacobs S, et al. Robot-assisted MIDCAB using bilateral internal thoracic artery: A propensity score–matched study with OPCAB patients. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2024; 19(2): 184–191. doi: 10.1177/15569845241245422
Weymann A, Amanov L, Beltsios E, et al. Minimally invasive direct coronary artery bypass grafting: Sixteen years of single-center experience. Journal of Clinical Medicine. 2024; 13(11): 3338. doi: 10.3390/jcm13113338
Vassiliades TA, Nielsen JL, Lonquist JL. Effects of obesity on outcomes in endoscopically assisted coronary artery bypass operations. The Heart Surgery Forum. 2003; 6(2): 99–101. doi: 10.1532/hsf.569
Hemli JM, Darla LS, Panetta CR, et al. Does body mass index affect outcomes in robotic-assisted coronary artery bypass procedures? Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2012; 7(5): 350–353. doi: 10.1097/imi.0b013e31827e1ea9
Balacumaraswami L, Patel NC, Gorki H, et al. Minimally invasive direct coronary artery bypass as a primary strategy for reoperative myocardial revascularization. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2010; 5(1): 22–27. doi: 10.1097/imi.0b013e3181cef8a6
Cheng Y, Liu X, Zhao Y, et al. Risk factors for postoperative events in patients on antiplatelet therapy undergoing off-pump coronary artery bypass grafting surgery. Angiology. 2020; 71(8): 704–712. doi: 10.1177/0003319720919319
Kon ZN, Brown EN, Tran R, et al. Simultaneous hybrid coronary revascularization reduces postoperative morbidity compared with results from conventional off-pump coronary artery bypass. The Journal of Thoracic and Cardiovascular Surgery. 2008; 135(2): 367–375. doi: 10.1016/j.jtcvs.2007.09.025
Patel NC, Hemli JM, Kim MC, et al. Short- and intermediate-term outcomes of hybrid coronary revascularization for double-vessel disease. The Journal of Thoracic and Cardiovascular Surgery. 2018; 156(5): 1799–1807.e3. doi: 10.1016/j.jtcvs.2018.04.078
Sardar P, Kundu A, Bischoff M, et al. Hybrid coronary revascularization versus coronary artery bypass grafting in patients with multivessel coronary artery disease: A meta‐analysis. Catheterization and Cardiovascular Interventions. 2018; 91(2): 203–212. doi: 10.1002/ccd.27098
Hemli JM, Patel NC. Robotic cardiac surgery. Surgical Clinics of North America. 2020; 100(2): 219–236. doi: 10.1016/j.suc.2019.12.005
Loulmet D, Carpentier A, d’Attellis N, et al. Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments. The Journal of Thoracic and Cardiovascular Surgery. 1999; 118(1): 4–10. doi: 10.1016/S0022-5223(99)70133-9
Mohr FW, Falk V, Diegeler A, et al. Computer-enhanced coronary artery bypass surgery. The Journal of Thoracic and Cardiovascular Surgery. 1999; 117(6): 1212–1214. doi: 10.1016/S0022-5223(99)70261-8
Göbölös L, Ramahi J, Obeso A, et al. Robotic totally endoscopic coronary artery bypass grafting: Systematic review of clinical outcomes from the past two decades. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2019; 14(1): 5–16. doi: 10.1177/1556984519827703
Caimmi PPR, Fossaceca R, Lanfranchi M, et al. Cardiac Cardiac angio-CT scan for planning MIDCAB. The Heart Surgery Forum. 2004; 7(2): E113–6. doi: 10.1532/hsf98.200328101
Moodley S, Schoenhagen P, Gillinov AM, et al. Preoperative multidetector computed tomograpy angiography for planning of minimally invasive robotic mitral valve surgery: Impact on decision making. The Journal of Thoracic and Cardiovascular Surgery. 2013; 146(2): 262–268. doi: 10.1016/j.jtcvs.2012.06.052
Morris MF, Suri RM, Akhtar NJ, et al. Computed tomography as an alternative to catheter angiography prior to robotic mitral valve repair. The Annals of Thoracic Surgery. 2013; 95(4): 1354–1359. doi: 10.1016/j.athoracsur.2012.12.010
Leonard JR, Henry M, Rahouma M, et al. Systematic preoperative CT scan is associated with reduced risk of stroke in minimally invasive mitral valve surgery: A meta-analysis. International Journal of Cardiology. 2019; 278: 300–306. doi: 10.1016/j.ijcard.2018.12.025
Fitzgerald MM, Bhatt HV, Schuessler ME, et al. Robotic Cardiac Surgery Part Ⅰ: Anesthetic Considerations in Totally Endoscopic Robotic Cardiac Surgery (TERCS). Journal of Cardiothoracic and Vascular Anesthesia. 2020; 34(1): 267–277. doi: 10.1053/j.jvca.2019.02.039
Bhatt HV, Schuessler ME, Torregrossa G, et al. Robotic cardiac surgery Part Ⅱ: Anesthetic considerations for robotic coronary artery bypass grafting. Journal of Cardiothoracic and Vascular Anesthesia. 2020; 34(9): 2484–2491. doi: 10.1053/j.jvca.2019.11.005
Oehlinger A, Bonaros N, Schachner T, et al. Robotic endoscopic left internal mammary artery harvesting: What have we learned after 100 cases? The Annals of Thoracic Surgery. 2007; 83(3): 1030–1034. doi: 10.1016/j.athoracsur.2006.10.055
Bonatti J, Schachner T, Bernecker O, et al. Robotic totally endoscopic coronary artery bypass: program development and learning curve issues. The Journal of Thoracic and Cardiovascular Surgery. 2004; 127(2): 504–510. doi: 10.1016/j.jtcvs.2003.09.005
Kappert U, Cichon R, Schneider J, et al. Robotic coronary artery surgery–the evolution of a new minimally-invasive approach in coronary artery surgery. The Thoracic and Cardiovascular Surgeon. 2000; 48(4): 193–197. doi: 10.1055/s-2000-6904
Hemli JM, Henn LW, Panetta CR, et al. Defining the learning curve for robotic-assisted endoscopic harvesting of the left internal mammary artery. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2013; 8(5): 353–358. doi: 10.1097/imi.0000000000000017
Yanagawa F, Perez M, Bell T, et al. Critical outcomes in nonrobotic vs robotic assisted cardiac surgery. JAMA Surgery. 2015; 150(8): 771. doi: 10.1001/jamasurg.2015.1098
Barbash GI, Glied SA. New technology and health care costs–the case of robot-assisted surgery. New England Journal of Medicine. 2010; 363(8): 701–704. doi: 10.1056/nejmp1006602
Whellan DJ, McCarey MM, Taylor BS, et al. Trends in robotic-assisted coronary artery bypass grafts: A study of the society of thoracic surgeons adult cardiac surgery database, 2006 to 2012. The Annals of Thoracic Surgery. 2016; 102(1): 140–146. doi: 10.1016/j.athoracsur.2015.12.059
Balkhy HH, Amabile A, Torregrossa G. A shifting paradigm in robotic heart surgery: From single-procedure approach to establishing a robotic heart center of excellence. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2020; 15(3): 187–194. doi: 10.1177/1556984520922933
Brown LM, Kratz A, Verba S, et al. Pain and opioid use after thoracic surgery: Where we are and where we need to go. The Annals of Thoracic Surgery. 2020; 109(6): 1638–1645. doi: 10.1016/j.athoracsur.2020.01.056
Pirelli L, Patel NC, Scheinerman JS, et al. Hybrid minimally invasive approach for combined obstructive coronary artery disease and severe aortic stenosis. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2020; 15(2): 131–137. doi: 10.1177/1556984519896581
Kobayashi J, Shimahara Y, Fujita T, et al. Early results of simultaneous transaortic transcatheter aortic valve implantation and total arterial off-pump coronary artery revascularization in high-risk patients. Circulation Journal. 2016; 80(9): 1946–1950. doi: 10.1253/circj.cj-16-0329
Giustino G, Serruys PW, Sabik JF, et al. Mortality after repeat revascularization following PCI or CABG for left main disease. JACC: Cardiovascular interventions. 2020; 13(3): 375–387. doi: 10.1016/j.jcin.2019.09.019
Baquero GA, Azarrafiy R, de Marchena EJ, et al. Hybrid off‐pump coronary artery bypass grafting surgery and transaortic transcatheter aortic valve replacement: Literature review of a feasible bailout for patients with complex coronary anatomy and poor femoral access. Journal of Cardiac Surgery. 2019; 34(7): 591–597. doi: 10.1111/jocs.14082
Ahad S, Wachter K, Rustenbach C, et al. Concomitant therapy: Off-pump coronary revascularization and transcatheter aortic valve implantation. Interactive Cardio Vascular and Thoracic Surgery. 2017; 25(1): 12–17. doi: 10.1093/icvts/ivx029
Falk V, Baumgartner H, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur J Cardiothorac Surg. 2017; 52(4): 616–664.
Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. European Heart Journal. 2017; 38(36): 2739–2791.
Sutter FP, Wertan MC, Spragan D, et al. Robotic-assisted coronary artery bypass grafting: how I teach it. Annals of Cardiothoracic Surgery. 2024; 13(4): 346–353. doi: 10.21037/acs-2024-rcabg-0033
Mori M, Geirsson A. The way forward in research on robotic cardiac surgery: the need for transatlantic robotic cardiac surgery registry. Annals of Cardiothoracic Surgery. 2024; 13(4): 376–378. doi: 10.21037/acs-2023-rcabg-0183
Gianoli M, de Jong AR, van der Harst P, et al. Cost analysis of robot-assisted versus on-pump and off-pump coronary artery bypass grafting: A single-center surgical and 30-day outcomes comparison. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2024; 19(4): 416–424. doi: 10.1177/15569845241269312
Dokollari A, Sicouri S, Prendergrast G, et al. Robotic-assisted versus traditional full-sternotomy coronary artery bypass grafting procedures: A propensity-matched analysis of hospital costs. The American Journal of Cardiology. 2024; 213: 12–19. doi: 10.1016/j.amjcard.2023.10.083