Heart as an endocrine-metabolic organ

Triana-Alcívar Héctor, Ureta-Pilligua Jordy, Mera-Flores Ronny Richard, Bermúdez Cevallos Leonardo, Rivadeneira Mendoza Yokasta

Article ID: 1920
Vol 4, Issue 2, 2023

VIEWS - 81 (Abstract)

Abstract

Historically, the heart has been considered a vital organ due to its function as an impeller and aspirating blood pump, allowing the fi siological perfusion to every corner of the human body. However, behind this pump role lies a little-discussed function, that is, the endocrine-metabolic role of the heart, as a hormone synthesizing organ and, because of its pump function, a distributor of hormones foreign to it. Understanding the incidence of peptides synthesized in the heart offers a new perspective on the relevance of the heart in homeostasis and how cardiovascular disease can alter metabolism. The present work aims to review the most current information on the role of natriuretic peptides produced in the heart and their endocrine-metabolic function. These are atrial, brain and C-type natriuretic peptides. It is concluded that the conception of the heart as an organ of endocrine-metabolic regulation, whose hormones are essential for the homeostasis of the organism, is fundamental for the medicine of this century and for future advances in new therapeutic strategies to improve the quality of life of patients.


Keywords

heart; metabolism; atrial natriuretic peptide; encephalic natriuretic peptide; c-type natriuretic peptide

Full Text:

PDF



References

1. Cruz Ortega HA, Calderón Monter FX. The heart and its normal and aggregate heart sounds. A brief review of the subject. Rev Fac Med UNAM 2016; 59: 49–55.

2. Saturno Chiu G. Cardiology. 1st ed. Bogotá, DC: Editorial El Manual Moderno; 2017.

3. Silva Furtado DF, Prata Vasconcelos LD, Branco É, de Lima AR. Anatomia cardíaca e ramificações da aorta em macaco-prego (Sapajus apella). Biotemas 2017; 30: 83–93.

4. Vera M, Huérfano Y, Valbuena O, et al. Automatic segmentation of the left atrium in cardiac computed tomography images. Rev Latinoam Hipertens 2016; 11: 54–59.

5. Lowe JS, Anderson PG, Anderson SI. Human Histology. 5th ed. Spain: Elsevier; 2020.

6. Mescher AL. Junqueira’s Basic Histology Text and Atlas. 15th ed. New York: LANGE; 2018.

7. Mohrman DE, Heller LJ. Cardiovascular Physiology. 9th ed. New York: LANGE; 2018: 368.

8. Castillo Moya A, del Pozo Bascuñán P. Cardiopulmonary interactions: From physiology to clinic. Rev Chil Pediatr 2018; 89: 582–591.

9. Pérez González LL, González Escudero M, Pérez Acosta ND. Peptides and their usefulness in clinical practice. Panorama Cuba y Salud 2018; 13: 78–82.

10. Rademaker MT, Scott NJA, Koh CY, Kini RM, Richards AM. Natriuretic peptide analogues with distinct vasodilatory or renal activity: integrated effects in health and experimental heart failure. Cardiovasc Res 2021; 117: 508–519.

11. Idzikowska K, Zielinska M. Midregional proatrial natriuretic peptide, an important member of the natriuretic peptide family: potential role in diagnosis and prognosis of cardiovascular disease. J Int Med Res 2018; 46: 3017–3029.

12. Cannone V, Cabassi A, Volpi R, et al. Atrial natriuretic peptide: A molecular target of novel therapeutic approaches to cardio-metabolic disease. Int J Mol Sci 2019; 20: 3265–3274.

13. Tanase DM, Radu S, Al Shurbaji S, et al. Natriuretic peptides in heart failure with preserved left ventricular ejection fraction: From molecular evidences to clinical implications. Int J Mol Sci 2019; 20: 1–23.

14. Nakano SJ, Everitt MD. Neurohormonal axis and natriuretic peptides in heart failure [Internet]. Heart failure in the child and young adult: from bench to bedside. 1st ed. Elsevier Inc 2018; 2: 75–86.

15. Salas GL, Jozefkowicz M, Goldsmit GS, et al. B-type natriuretic peptide: utility in the management of critically ill newborns. Arch Argent Pediatr 2017; 115: 483–489.

16. González Sánchez JA, Sánchez E, Contreras M. Natriuretic peptide ( BNP ). Rev Soc Venez Med Interna 2018; 34: 184–188.

17. Pascual-Figal DA, Casademont J, Lobos JM, et al. Consensus document and recommendations on the use of natriuretic peptides in clinical practice. Rev Clin Esp 2016; 216: 313–322.

18. Lorente DM, Hernández M, Arocena MJ, et al. Use of NT-pro BNP as a predictor of evolution in postoperative cardiac surgery. Rev Uruguaya Cardiol 2019; 34: 240–247.

19. Vasquez N, Carter S, Grodin JL. Angiotensin receptor -neprilysin inhibitors and the natriuretic peptide axis. Curr Heart Fail Rep 2020; 17: 67–76.

20. Escobar-Guerrero D, Suárez-Jaramillo A, Ullauri- Solórzano V, et al. Sensitivity of NT-pro- BNP compared with echocardiogram ejection fraction in patients with suspected systolic left heart failure. Rev Ecuatoriana Cardiol [Internet] 2016; 2: 1–10.

21. Moyes AJ, Hobbs AJ. C-Type natriuretic peptide: a multifaceted paracrine regulator in the heart and vasculature. Int J Mol Sci 2019; 20: 2281–2295.

22. Spiranec K, Chen W, Werner F, et al. Endothelial C-type natriuretic peptide acts on pericytes to regulate microcirculatory flow and blood pressure. Circulation 2018; 138: 494–508.

23. Wilson MO, Barrell GK, Prickett TCR, et al. Molecular forms of C-type natriuretic peptide in cerebrospinal fluid and plasma reflect differential processing in brain and pituitary tissues. Peptides 2018; 99: 223–230.

24. Navarro Solano J, Poveda Fernández J. Update on the use of neprilysin and angiotensin II receptor inhibitors: ripple in the benefit on different entities. Rev Costarric Cardiol 2018; 20: 22–36.

25. Jerez Castro AM. Biomarkers in heart failure. Soc Cuba Cardiol2019; 11: 317–325.

26. Lugnier C, Meyer A, Charloux A, et al. The endocrine function of the heart: physiology and involvements of natriuretic peptides and cyclic nucleotide phosphodiesterases in heart failure. J Clin Med 2019; 8: 1–20.

27. Rignault-Clerc S, Bielmann C, Liaudet L, et al. Natriuretic Peptide Receptor B modulates the proliferation of the cardiac cells expressing the Stem Cell Antigen-1. Sci Rep 2017; 7: 1–14.

28. Craigie E, Mullins JJ, Bailey MA. Glucocorticoids and mineralocorticoids. Chapter 1 in: Cardiovascular Hormone Systems: From Molecular Mechanisms to Novel Therapeutics. Editor(s): Prof. Dr. Michael Bader 2009; 25: 1–37.

29. Rubattu S, Sciarretta S, Morriello A, et al. NPR-C: A component of the natriuretic peptide family with implications in human diseases. J Mol Med 2010; 88: 889–897.

30. Madiraju P, Hossain E, Anand-Srivastava MB. Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells. Mol Cell Biochem 2018; 448: 77–89.

31. Tsutamoto T, Sakai H, Yamamoto T, et al. Heart is the target organ of endogenous cardiac natriuretic peptides. Int Heart J [Internet] 2020; 61: 77–82.

32. Matsuo A, Nagai-Okatani C, Nishigori M, et al. Natriuretic peptides in human heart: novel insight into their molecular forms, functions, and diagnostic use. Peptides [Internet] 2019; 3–17.

33. Ramos H. Acute myocardial infarction: When peptides come marching in. Rev Fed Argentina Cardiol [Internet] 2016; 45: 108–109.

34. Domondon M, Nikiforova AB, DeLeon-Pennell KY, Ilatovskaya DV. Regulation of mitochondria function by natriuretic peptides. Am J Physiol Renal Physiol 2019; 317: F1164–F1168.

35. Vasile VC, Jaffe AS. Natriuretic peptides and analytical barriers. Clin Chem 2017; 63: 50–58.

36. Forte M, Madonna M, Schiavon S, et al. Cardiovascular pleiotropic effects of natriuretic peptides. Int J Mol Sci [Internet] 2019; 20.

37. Lee HS, Cho KW, Kim HY, et al. Chamber-specific regulation of atrial natriuretic peptide secretion in cardiac hypertrophy: atrial wall dynamics in the ANP secretion. Pflugers Arch Eur J Physiol [Internet]2020; Available from: https://doi.org/10.1007/s00424-020-02377-2.

38. Sun JZ, Chen SJ, Majid-Hasan E, et al. Dietary salt supplementation selectively downregulates NPR-C receptor expression in kidney independently of ANP. Am J Physiol Renal Physiol 2002; 282: 220–227.

39. Sun JZ, Chen SJ, Li G, et al. Hypoxia reduces atrial natriuretic peptide peptide clearance receptor gene expression in ANP knockout mice. Am J Physiol Lung Cell Mol Physiol 2000; 279: 511–519.

40. Feng JA, Perry G, Mori T, et al. Pressure-independent enhancement of cardiac hypertrophy in atrial natriuretic peptide-deficient mice. Clin Exp Pharmacol Physiol 2003; 30: 343–349.

41. Santhekadur PK, Kumar DR Seneshaw M, Mirshahi F, Sanyal AJ. The multifaceted role of natriuretic peptides in metabolic syndrome. Biomed Pharmacother [Internet] 2017; 92: 826–835.

42. Kinoshita H, Kuwahara K, Nishida M, et al. Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides- guanylyl cyclase-a signaling in the heart. Circ Res 2010; 106: 1849–1860.

43. He X, Li S, Liu B, et al. Major contribution of the 3/6/7 class of TRPC channels to myocardial ischemia/ reperfusion and cellular hypoxia/reoxygenation injuries. Proc Natl Acad Sci U S A2017; 114: E4582–E4591.

44. Kapoun AM, Liang F, Young G, et al. B-Type natriuretic peptide exerts broad functional opposition to transforming growth factor-β in primary human cardiac fi broblasts: fi brosis, myofi broblast conversion, proliferation, and infl ammation. Circ Res 2004; 94: 453–461.

45. Fu S, Ping P, Wang F, et al. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J Biol Eng 2018; 12: 1–21.

46. Cresci S, Pereira NL, Ahmad F, et al. Heart failure in the era of precision medicine: a scientific statement from the American Heart Association. Circ Genomic Precis Med 2019; 12: 458–485.

47. Michel L, Mincu RI, Mahabadi AA, et al. Troponins and brain natriuretic peptides for the prediction of cardiotoxicity in cancer patients: a meta-analysis. Eur J Heart Fail 2020; 22: 350–361.

48. Nakagawa Y, Nishikimi T, Kuwahara K. Atrial and brain natriuretic peptides: hormones secreted from the heart. Peptides [Internet] 2019; 111: 18–25.

49. Gupta DK, Wang TJ. Natriuretic peptides and cardiometabolic health. Circ J 2015; 79: 1648–1655.

50. Yat Wong PC, Guo J, Zhang A. The renal and cardiovascular effects of natriuretic peptides. Adv Physiol Educ 2017; 41: 179–185.

51. Sciarretta S, Marchitti S, Bianchi F, et al. C2238 atrial natriuretic peptide molecular variant is associated with endothelial damage and dysfunction through natriuretic peptide receptor C signaling. Circ Res 2013; 112: 1355–1364.

52. Scarpino S, Marchitti S, Stanzione R, et al. Reactive oxygen species-mediated effects on vascular remodeling induced by human atrial natriuretic peptide T2238C molecular variant in endothelial cells in vitro. J Hypertens 2009; 27: 1804–1813.

53. Rubattu S, Sciarretta S, Marchitti S, et al. The T2238C human atrial natriuretic peptide molecular variant and the risk of cardiovascular diseases. Int J Mol Sci 2018; 19: 1–10.

54. Strisciuglio T, Barbato E, De Biase C, et al. T2238C Atrial Natriuretic Peptide Gene Variant and the Response to Antiplatelet Therapy in Stable Ischemic Heart Disease Patients. J Cardiovasc Transl Res 2018; 11: 36–41.

55. Weber NC, Blumenthal SB, Hartung T, Vollmar AM, Kiemer AK. ANP inhibits TNF-alpha-induced endothelial MCP-1 expression—Involvement of p38 MAPK and MKP-1. J Leukoc Biol 2003; 74: 932–941.

56. Scotland RS, Cohen M, Foster P, et al. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proc Natl Acad Sci U S A 2005; 102: 14452–14457.

57. Ikeda M, Kohno M, Yasunari K, et al. Natriuretic peptide family as a novel antimigration factor of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1997; 17: 731–736.

58. Burtenshaw D, Cahill PA. Natriuretic Peptides and the Regulation of Retinal Neovascularization. Arterioscler Thromb Vasc Biol [Internet] 2020; 40: 7–10.

59. Sangaralingham SJ, McKie PM, Ichiki T, et al. Circulating C-type natriuretic peptide and its relationship to cardiovascular disease in the general population. Hypertension 2015; 65: 1187–1194.

60. De Arriba de la Fuente G, Pérez del Valle KM, Gaitan Tocora DG, Rodríguez Puyol D. Arterial hypertension and kidney. Medicine [Internet] 2019; 12: 4759–4764.

61. Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: From molecular basis to treatment. Clin Sci 2016; 130: 57–77.

62. Theilig F, Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. Am J Physiol - Ren Physiol 2015; 308: F1047–F1055.

63. Ogawa T, de Bold AJ. The heart as an endocrine organ. Endocr Connect 2014; 3: 1–14.

64. Lima M, Carmelo Nuccio J, Villalobos M, Torres C, Balladares N. Renin angiotensin system and cardio-metabolic risk. Rev Venez Endocrinol Metab [Internet] 2010; 8: 3–10.

65. Nakagawa H, Oberwinkler H, Nikolaev VO, et al. Atrial natriuretic peptide locally counteracts the deleterious effects of cardiomyocyte mineralocorticoid receptor activation. Circ Hear Fail 2014; 7: 814–821.

66. Matsukawa T, Miyamoto T. Angiotensin II-stimulated secretion of arginine vasopressin is inhibited by atrial natriuretic peptide in humans. Am J Physiol Regul Integr Comp Physiol 2011; 300: 624–629.

67. Cha SA, Park BM, Gao S, et al. Stimulation ofANP by angiotensin-(1-9) via the angiotensin type 2 receptor. Life Sci [Internet] 2013; 93: 934–940.

68. Saito K, Uchino S, Fujii T, et al. Effect of low-dose atrial natriuretic peptide in critically ill patients with acute kidney injury: a retrospective, single-center study with propensity-score matching. BMC Nephrol [Internet] 2020; 21: 31–42.

69. Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML. Diverse biological actions of atrial natriuretic peptide. Physiol Rev 1990; 70: 665–699.

70. Armaly Z, Assady S, Abassi Z. Corin: A new player in the regulation of salt-water balance and blood pressure. Curr Opin Nephrol Hypertens 2013; 22: 713–722.

71. Zhou Y, Wu Q. Corin in natriuretic peptide processing and hypertension topical collection on mediators, mechanisms, and pathways in tissue injury. Curr Hypertens Rep 2014; 16: 415–421.

72. Tarjan E, Denton DA, Weisinger RS. Atrial natriuretic peptide inhibits water and sodium intake in rabbits. Regul Pept 1988; 23: 63–75.

73. Bell C. Regulation of metabolism. In: Primer on the Autonomic Nervous System 2012. p. 253–5.

74. Romero Aguilar L, Guerra Sánchez G, Pardo JP, Luqueño Bocardo OI. Lipid bodies: metabolically active organelles. Rev Educ Biochemistry 2017; 35: 115–124.

75. Chabowski A, Górski J. Muscle lipid metabolism. Muscle Exerc Physiol 2018; 271–284.

76. García Díaz JD, Mesa Latorre JM, Valbuena Parra AR, Corps Fernández D. Disorders of lipid metabolism. Medicine [Internet] 2016; 12: 1059–1071.

77. Wang TJ. The natriuretic peptides and fat metabolism. N Engl J Med 2012; 367: 377–378.

78. Bartels ED, Nielsen JM, Bisgaard LS, Goetze JP, Nielsen LB. Decreased expression of natriuretic peptides associated with lipid accumulation in cardiac ventricle of obese mice. Endocrinology 2010; 151: 5218–5225.

79. Chiba A, Watanabe-Takano H, Miyazaki T, Mochizuki N.Cardiomyokines from the heart. Cell Mol Life Sci [Internet] 2018; 75: 1349–1362.

80. Sengenès C, Bouloumié A, Hauner H, et al. Involvement of a cGMP- dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem 2003; 278: 48617–48626.

81. Sengenés C, Berlan M, De Glisezinski I, Lafontan M, Galitzky J. Natriuretic peptides: a new lipolytic pathway in human adipocytes. FASEB J 2000; 14: 1345–1351.

82. Birkenfeld AL, Boschmann M, Moro C, Adams F, Heusser K, Tank J, Diedrich A, Schroeder C, Franke G, Berlan M et al. Β-Adrenergic and Atrial Natriuretic Peptide Interactions on Human Cardiovascular and Metabolic Regulation. J Clin Endocrinol Metab 2006; 91: 5069–5075.

83. Moro C, Pillard F, De Glisezinski I, Harant I, Riviere D, Stich V, Lafontan M, Crampes F, Berlan M. Training enhances ANP lipid-mobilizing action in adipose tissue of overweight men. Med Sci Sports Exerc 2005; 37: 1126–1132.

84. Thomsen CF, Ried-Larsen M, Goetze JP, et al. Plasma proatrial natriuretic peptide associates with lipid oxidation during exercise and cardiorespiratory fitness in healthy young adults. Peptides 2019; 122: 170156–170163.

85. Cedikova M, Kripnerová M, Dvorakova J, et al. Mitochondria in White, Brown, and Beige Adipocytes. Stem Cells Int [Internet] 2016; 2016.

86. González N, Moreno-Villegas Z, González-Bris A, Egido J, Lorenzo. Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated with obesity and diabetes. Cardiovasc Diabetol 2017; 16: 1–11.

87. Morales González F, Jimenez Badilla J. Adipose tissue as an endocrine organ: morbidity model in metabolic syndrome among others. Rev Clín Esc Med UCR-HSJD 2018; 1–6.

88. Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat. Nature 2014; 510: 76–83.

89. Garcia Rosa ML, Chung Kang H, Lagoeiro Jorge AJ, Noel Ximenes T, Salim Sautter L, Bazon Devito S, Parovszky H, Durao M, Zanon K. Role of adipose tissue in obesity and heart failure. Insufic Card [Internet] 2019; 14: 55–63.

90. Muoio DM. Metabolism and Vascular Fatty Acid Transport. N Engl J Med 2010; 363: 291–293.

91. Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi- Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 2012; 122: 1022–1036.

92. Bordicchia M, Spannella F, Ferretti G, Bacchetti T, Vignini A, Di Pentima C, Mazzanti L, Sarsani R. PCSK9 is expressed in human visceral adipose tissue and regulated by insulin and cardiac natriuretic peptides. Int J Mol Sci 2019; 20: 1–15.

93. Shi F, Collins S. Second messenger signaling mechanisms of the brown adipocyte thermogenic program: An integrative perspective. Horm Mol Biol Clin Investig 2017; 31: 1–9.

94. Jankovic A, Golic I, Markelic M, Stancic A, Otasevic V, Buzadzic B, Korac A, Korac B. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation. J Physiol 2015; 593: 3267–3280.

95. Miyashita K, Itoh H, Tsujimoto H, et al. Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 2009; 58: 2880–2892.

96. Zois NE, Bartels ED, Hunter I, et al. Natriuretic peptides in cardiometabolic regulation and disease. Nat Rev Cardiol [Internet] 2014; 11: 403–412.

97. Engeli S, Birkenfeld AL, Badin PM, et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest 2012; 122: 4675–4679.

98. Moro C, Klimcakova E, Lolmède K, et al. Atrial natriuretic peptide inhibits the production of adipokines and cytokines linked to inflammation and insulin resistance in human subcutaneous adipose tissue. Diabetologia 2007; 50: 1038–1047.

99. Heinisch BB, Vila G, Resl M, et al. B-type natriuretic peptide (BNP) affects the initial response to intravenous glucose: A randomised placebo-controlled cross-over study in healthy men. Diabetologia 2012; 55: 1400–1405.

100. Vila G, Grimm G, Resl M, et al. B-type natriuretic peptide modulates ghrelin, hunger, and satiety in healthy men. Diabetes 2012; 61: 2592–2596.

101. Yasoda A, Ogawa Y, Suda M, Tet al. Natriuretic Peptide Regulation of Endochondral Ossification. J Biol Chem 1998; 273: 11695–11700.

102. Wu K, Mei C, Chen Y, et al. C-type natriuretic peptide regulates sperm capacitation by the cGMP/PKG signalling pathway via Ca 2+ influx and tyrosine phosphorylation. Reprod Biomed Online 2019; 38:289–299.

103. Cannone V, Buglioni A, Sangaralingham SJ, Scott C, Bailey KR, Rodeheffer R, Reldfield M, Sarnazi R, Burnett J. Aldosterone, Hypertension, and Antihypertensive Therapy: Insights from a General Population. Mayo Clin Proc 2018; 93: 980–990.

104. Buglioni A, Cannone V, Cataliotti A, et al. Circulating aldosterone and natriuretic peptides in the general community relationship to cardiorenal and metabolic disease. Hypertension 2015; 65: 45–53.

105. Rubattu S, Forte M, Marchitti S, et al. Molecular implications of natriuretic peptides in the protection from hypertension and target organ damage development. Int J Mol Sci 2019; 20: 798.

106. Mueller C, McDonald K, de Boer RA, et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail 2019; 21: 715–731.

107. Mogensen UM, Gong J, Jhund PS, et al. Effect of sacubitril/valsartan on recurrent events in the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM-HF). Eur J Heart Fail 2018; 20: 760–768.


DOI: https://doi.org/10.54517/ccr.v4i2.1920
(81 Abstract Views, 0 PDF Downloads)

Refbacks

  • There are currently no refbacks.